TABLE OF CONTENTS

18			
19		nitions	
20		nyms	
21		duction	
22		icability	
23		guards	
24		ainable Development Goals (SDGs)	
25		ect Boundary	
26		line Scenario(s)	
27		line Energy Consumption Defaults and Caps	
28		tionality	
29	11. Quar	ntification of GHG Emission Reductions	
30	11.1.	CTEC Projects	35
31 32	11.1.1. Displ	CTEC Projects Using the Back-Calculation Approach for aced Baseline Energy Consumption	35
33	11.1.2.	CTEC Projects Using Tracked Energy Consumption and K	PTs42
34	11.1.3.	Emission Reductions for CTEC Projects	47
35	11.2.	Non-CTEC Projects	48
36	11.2.1.	Baseline Emissions for Non-CTEC Projects	48
37	11.2.2.	Project Emissions for Non-CTEC Projects	52
38	11.2.3.	Emission Reductions for Non-CTEC Projects	57
39	11.3.	Upstream Emissions	58
40	12. Moni	toring Requirements	6
41	12.1.	Monitoring Activity Schedule for CTEC Projects	6
42	12.2.	Monitoring Activity Schedule for Non-CTEC Projects	62
43	12.3.	Other Monitoring Requirements	63
44	13. Meth	odology Parameters	65
45	13.1.	Ex-Ante Parameters	65
46	13.2.	Monitored Parameters	77
47	14. Appe	endices	9
48		dix 1: Project Information Cover Sheet	
49	Appen	dix 2: Grid Emission Factors	99
50	Appen	dix 3: Off-Grid Emission Factors for Select Technologies	10

51	Appendix 4: Upstream Emissions from Other Fuels in tonne/TJ10)2
52 53	Appendix 5: Default Point of Use Emission Factors, Thermal Efficiencies, and NCVs	05
54 55	Appendix 6: Requirements and Best Practices for Baseline and Project Surveys 107	
56 57	Appendix 7: Requirements and Best Practices for Kitchen Performance Tests (KPTs)	10
58 59	Appendix 8: Requirements and Best Practices for Controlled Cooking Tests (CCTs)	13
60 61	Appendix 9: Requirements and Best Practices for Stove Use Monitors (SUMs)	18
62 63	Appendix 10: Sampling Requirements and Best Practices for Surveys, KPTs, CCTs, and SUMs12	23
64	Appendix 11: Default fNRB Values from CDM TOOL331	31
65 66		

1. Definitions

Additionality: When the project activity would not have occurred in the absence of the incentives from carbon finance and when the emission reductions achieved by the project would not occur as a result of any legal instrument. To demonstrate additionality, project proponents must provide financial viability information and also conduct a regulatory analysis, barrier analysis, and a common practice analysis.

Artisanal cookstoves: Cookstoves produced by small-scale manufacturing processes that can result in large variations in dimensions; generally made by hand by skilled workers, rather than mass-produced in factories. This methodology requires that for artisanal cookstoves, at least three randomly-selected samples of each cookstove model must be used when testing for International Organization for Standardization (ISO) thermal efficiency, and where relevant for the Controlled Cooking Test (CCT).

 Baseline scenario: Existing baseline technologies and fuel consumption patterns in a planned cooking energy carbon project area, prior to the implementation of the project. This baseline scenario (or scenarios) includes fuel types, fuel mix proportions, and household size, identified through baseline surveys prior to project implementation. Under the CLEAR methodology, the baseline scenario must be compared to the baseline technologies and fuel consumption patterns of actual households recruited into the project, through the use of retrospective questions of project households during the first usage survey in any given household. Adjustments must be made in the case of any material discrepancy.

Best practice: Evidence-based approaches recommended throughout this methodology. These are not requirements.

Business-as-usual (BAU) scenario: Plausible reference trajectory or scenario for greenhouse gas (GHG) emissions or removals that would occur in the absence of the implementation of the proposed activity. In the CLEAR methodology, the BAU scenario is in most cases equivalent to the baseline scenario, with adjustments made to the baseline scenario for any changes in the target population, if necessary.

Carbon-crediting program: Standard-setting program that registers climate change mitigation activities and issues carbon credits.

Charcoal: Fuel produced by partially burning wood in a low-oxygen environment. The black substance that results is made up mostly of carbon and has higher energy density than the wood.

Continuously tracked energy consumption (CTEC) project: Project that continuously measures fuel or energy consumption directly on all project technologies and in all project households through built-in or external data loggers (also known as metering), or through fuel sales records. Fuel sales records can only be used in CTEC projects, must be tracked at the household level, and must be cross-checked. Commonly metered fuels/technologies include electric cookstoves, liquified petroleum gas (LPG), ethanol, and biogas.

Controlled Cooking Test (CCT): Test that measures cookstove performance in comparison to traditional cooking methods when a cook prepares a predetermined local meal, which may include multiple dishes. It is designed to assess cookstove performance in a controlled setting using local fuels, pots, and practices.

Cooking energy transition(s): Shift from one or more cooking fuel/ technology combination to another. In the context of this methodology, it specifically refers to the shift from polluting cooking fuels and technologies to cleaner and/or more efficient alternatives that results in GHG emission reductions.

Cooking event(s): Occurrence in which useful energy is delivered from a cookstove to fulfill a discrete task or set of tasks, such as cooking a meal (which may include multiple dishes), preparing tea, or heating water for bathing.

Crediting period: Period defined by the carbon-crediting program during which the project GHG emission reductions are eligible for the issuance of carbon credits. A crediting period may include multiple monitoring periods. This methodology allows a maximum crediting period duration of 5 years, with opportunity for crediting period renewal.

Displacement: Dis-use of baseline cooking technologies and fuels due to use of the project cookstove.

Emission factor: Quantity of a pollutant released to the atmosphere relative to an activity associated with the release of that pollutant. Emission factors are usually expressed as the quantity of pollutant divided by a unit weight, volume, distance, or duration of the activity emitting the pollutant. In the context of cookstove carbon projects, emission factors measure the average

152 mass of carbon dioxide equivalent (CO₂e) released to the atmosphere per 153 energy unit of cooking fuel (e.g., tonnes per TJ).

Fraction of Non-Renewable Biomass (fNRB): Geographically specific parameter that estimates the percentage of wood that is harvested beyond the landscape's rate of regeneration meaning that the wood is not a carbonneutral fuel.

Hawthorne Effect: Impact from the act of observation on human behavior affecting a given result or outcome.

Household: Individual residential unit and all the individuals living together and sharing cooking facilities and energy resources within that dwelling as their usual place of residence.

Kitchen Performance Test (KPT): Field-based procedure to quantify fuel consumption under typical household and cookstove usage conditions. It involves daily measurements of the amount of fuel used across several days in the user household's kitchen, and it is usually accompanied by descriptive surveys.

Leakage: In the context of carbon-crediting programs, a change in anthropogenic GHG emissions that occur outside the project boundary, and which are attributable to the project activity.

Monitoring period: Time period for which a given batch of emission reductions is verified and certified for issuance; a subset of the crediting period. While project proponents can determine the length of the monitoring period, CLEAR recommends a two-year maximum for the monitoring period, since KPTs must be conducted at least every two years.

Net Calorific Value (NCV) of fuel: Amount of heat released during the complete combustion of a unit quantity of fuel excluding the heat needed to vaporize the water formed during combustion. In this methodology, it is expressed in units of energy per mass (TJ/tonne).

Non-continuously tracked energy consumption (non-CTEC) project: Project that measures project cookstoves energy consumption on only a subset of sites, and/or do not measure energy consumption continuously.

Non-permanence: When the emission reductions achieved by a project do not persist and emissions are released back into the atmosphere.

Non-renewable fuels: Include the non-renewable fraction of fuelwood and charcoal, as well as fossil fuels such as LPG, coal, and kerosene.

Off-grid renewable energy: Renewable energy that is generated independently of the national or regional electrical grid, for example, by community- or household-level solar, micro-hydro, or wind installations.

Pellets: Upgraded biomass fuel made from densified dry materials such as residues from wood harvesting or processing, residues from harvesting or processing of agricultural crops or purpose grown plants. Pellet properties can be described according to the ISO 17225 set of standards.

Project technology days (PTDs): Number of days for which project technologies are available (at the project household, within the project boundary, and functioning) and in regular use (once or more per week on average) during a given monitoring period (see also "User household" definition). This parameter is used for non-CTEC projects.

Rebound effect: Increased usage of a product or service resulting from an improvement in its efficiency, potentially negating some or all of the expected emission reductions. In cookstove carbon projects, this effect could occur if households are able to increase how much they cook with the same amount of fuel after the introduction of a project cookstove. Rebound is also often linked to suppressed demand, where the project cookstove meets previously unmet cooking needs (see Suppressed Demand).

Renewable biomass: By-product, residue, or waste stream from agriculture, forestry, and related industries that would not be used as a fuel or feedstock in the absence of the project activity, or biomass that originates from plantations that operate sustainably where all project and leakage emissions associated with the biomass cultivation are accounted for.

Renewable fuels: Include the renewable fraction of fuelwood and charcoal, waste biomass like crop residues and dung, processed biomass like briquettes and pellets from fully renewable sources, bioethanol, biogas, and solar.

Stove stacking: Use of multiple cooking technologies and/or fuels within a household.

Stove Use Monitor (SUM): Device that quantifies cookstove usage through direct measurements of physical or chemical parameters (e.g., temperature, heat flow, light, power, motion, gas concentration, etc.) of cookstoves, kitchen technologies, and cookware, among others. SUMs do not measure

fuel or energy consumption and therefore do not meet the requirements for CTEC projects.

Suppressed demand: Situation where the level of access to a given good or service is insufficient – due to poverty or lack of access to infrastructure – to meet human development needs. In the context of cookstove carbon projects, accounting for suppressed demand means that the baseline scenario is adjusted to an amount of cooking fuel necessary to provide for human needs rather than a potentially lower, actual amount of fuel used for cooking. To account for suppressed demand¹, this methodology uses a baseline fuel consumption default value equivalent to 0.5 tonnes/ (person*year) of air-dried wood; the minimum level of energy service required for cooking.

Third-party entity: Entity that has no affiliation with the project proponent and no financial stake in the project. The independence of the entity may be demonstrated through a signed conflict of interest form in which all conflicts are disclosed (including relational, financial, competitive, and others).

TJ/(person*year): Unit of per capita annual energy consumption.

Tonne: Metric tonne (1,000 kilograms).

Transmission and distribution (T&D) losses: Losses incurred supplying grid electricity from point of the generation to end users.

Upstream emissions: In the context of this methodology, upstream emissions represent the GHG emissions associated with the production, processing, transportation, and distribution of cooking fuels. Upstream emissions apply to both baseline and project scenarios.

Useful energy delivered: Energy transferred to the contents of a cooking vessel, including the sensible heat that raises the temperature of the contents of the cooking vessel and the latent heat of evaporation of water from the cooking vessel.

User household: Project household with a functioning cookstove that is in use on average once or more per week during a given monitoring period,

¹ Projects using the CLEAR methodology may use the minimum level of energy services required for cooking as a static baseline, or may use the suppressed demand approach outlined in "Addressing Suppressed Demand in Mechanism Methodologies".

confirmed through both self-reporting and visual inspection, or through SUMs.

Usage: Frequency or quantity of cooking with a given technology. In the context of this methodology, usage is addressed in the form of annual usage surveys, which determine primary fuel type and household size, confirm whether a household meets "User household" criteria, and determine the proportion of cooking done on baseline cookstoves for back-calculating baseline energy consumption for CTEC projects. Usage is also addressed in the context of Hawthorne effect calculations in the form of number of cooking events per day. Usage cannot be used as a substitute for direct fuel consumption measurements, which are required for calculating all project emissions and emission reductions.

Validation and Verification Body (VVB): Accredited, independent organization that is responsible for auditing emission reductions in GHG emissions mitigation projects to ensure conformity with relevant standards and regulations.

Wood-to-charcoal conversion factor: Expresses the amount of wood needed to produce a standard quantity of charcoal, typically expressed as a ratio of the mass of air-dry or oven-dry wood input per mass of charcoal output. This factor is relevant only for projects that use charcoal in the baseline and/or project scenarios. This methodology uses a 6:1 conversion factor, which is incorporated into upstream emission factor values (as noted in <u>Appendix 4: Upstream Emissions from Other Fuels</u>), and fNRB (as noted in the fNRB parameter table in <u>Section 13: Methodology Parameters</u>). Nonetheless, the methodology also includes emission factors based on a 4:1 conversion factor, to enable ICVCM Core Carbon Principles (CCP) eligibility.

Woody biomass: Any and all wood, whether or not it is harvested and used as a fuel, including live trees and shrubs, and wood harvested for any purpose.

2. Acronyms

4C	Clean Cooking and Climate Consortium
CCT	Controlled Cooking Test
CLEAR Comprehensive Lowered Emission Assessment and Reporting	
	Methodology for Cooking Energy Transitions
CTEC	Continuously Tracked Energy Consumption
CH ₄	Methane
CO ₂	Carbon dioxide
CO ₂ e	Carbon dioxide equivalent
FAO	Food and Agriculture Organization
fNRB	Fraction of Non-Renewable Biomass
GHG	Greenhouse Gas
GWP	Global Warming Potential
ISO	International Organization for Standardization
KPT	Kitchen Performance Test
kWh Kilowatt-hour	
LPG	Liquified Petroleum Gas
MJ	Megajoule
N ₂ O	Nitrous Oxide
NCV	Net Calorific Value
PTDs	Project Technology Days
SDG	Sustainable Development Goal
SUM	Stove Use Monitor
T&D	Transmission and Distribution
TJ	Terajoule
VVB	Validation and Verification Body

3. Introduction

This methodology is a comprehensive carbon project methodology specifically designed for crediting emission reductions from cooking projects. It is applicable for nearly all cooking energy transitions for which the technologies meet the performance applicability criteria noted below.

Background: This methodology originated in response to stakeholder feedback at a side event at the 2022 Clean Cooking Forum focused on field monitoring, responding to a stated need for a new rigorous clean cooking carbon methodology with a harmonized approach, that would increase quality, transparency, and consistency across the clean cooking carbon project ecosystem. It has been developed by the clean cooking sector, for the clean cooking sector, through a process facilitated by the <u>Clean Cooking and Climate Consortium (4C)</u>. The methodology was developed in close collaboration with more than 250 key stakeholders including the United Nations Framework Convention on Climate Change (UNFCCC) secretariat, voluntary standards bodies, project proponents, researchers, carbon buyers, and others.

Relevance: This methodology differs from other available cookstove carbon methodologies in a number of key ways. It is the first and only methodology to cover all common cooking transition scenarios, eliminating the need for multiple methodologies. Moreover, it has been developed as a public good available for use by any standards body or bilateral/multilateral agreement and is intended to become the standard methodology for cookstove projects under Articles 6.2 and 6.4 of the Paris Agreement, and across the voluntary carbon market, increasing consistency across the clean cooking carbon landscape.

It incorporates the latest science on key parameters, increasing the requirements for substantiating input parameters that make the most difference in estimating emission reductions, and requires direct in-situ measurements of fuel consumption. As such, by using this methodology, clean cooking carbon projects will generate realistic emission reduction estimates and reduce integrity risks.

Summarized approach: The CLEAR methodology defines emission reductions as total project emissions subtracted from total baseline emissions, adjusted for leakage. Both baseline and project emissions must account for fuel consumption, renewability, and upstream emissions.

Energy consumption

- 356 Energy consumption is calculated differently for Continuously Tracked
- 357 Energy Consumption (CTEC) and non-CTEC projects. CTEC projects

continuously measure fuel or energy consumption on all project technologies and in all project households (no sampling allowed) using built-in or external data loggers (also known as metering), or through fuel sales records. Non-CTEC projects are those that measure project cookstoves energy consumption at only a subset of sites.

363364

365

Usage cannot be used as a substitute for direct fuel consumption measurements, which are required for calculating all project emissions and emission reductions.

366367368

369

370

371

372

Non-CTEC projects

The CLEAR methodology provides two options to determine baseline fuel consumption for non-CTEC projects. The first option is using a conservative global default that represents the minimum level of energy service required for household cooking, and the second option is conducting a baseline KPT, subject to caps and flags if outside of the expected consumption range.

373374375

376

377

378

379

380

381

To determine project fuel consumption, non-CTEC project proponents must conduct a project KPT. To adjust for the Hawthorne effect, projects can either (i) cap their emission reductions (ERs) at 75% of what the project KPT-based estimate would be, or (ii) directly measure any effects using stove use monitors (SUMs), by comparing cookstove use during the Kitchen Performance Test (KPT) to the month before or after, and making the appropriate downward adjustment. For methodological consistency, this adjustment is applied directly in the project emissions calculation.

382 383 384

CTEC projects

385 The CLEAR methodology provides two options for determining energy consumption for CTEC projects. Under the first option, tracked project 386 cookstove energy consumption data is used to back-calculate baseline 387 388 energy consumption using annual usage surveys and specific fuel consumption ratios of the baseline and project cookstoves, determined via 389 CCTs performed on each cookstove model. Under the second option, a 390 391 baseline KPT is used to estimate the emission reductions produced per TJ of the continuously tracked project technology energy consumption and then 392 scaled by the total tracked project energy consumption to determine the 393 total emission reductions. In both cases, fuel consumption is continuously 394 395 measured directly through the use of built-in or external data loggers, or through fuel sales records, to determine the total energy use for all project 396 cookstoves in all project households. Fuel sales records can only be used in 397 CTEC projects and must be tracked at the household level. As a control on 398 399 potential fuel diversion, household fuel consumption tracked through fuel

sale records must be cross-checked against average project energy consumption values.

Baseline setting approach

The CLEAR methodology supports two of the UNFCCC approaches to set the baseline described in Section 6 of the <u>Article 6.4 Standard: Setting the baseline in mechanism methodologies</u>: (1) the "existing actual or historical emissions approach", derived from direct measurements of fuel consumption, including KPTs and continuously tracked energy consumption approaches, and (2) the "best available technology" (BAT) approach, which is only applicable for projects that use global default values for baseline energy consumption.

User households and Project Technology Days (PTDs)

CLEAR defines user households as project households with a functioning cookstove that is in use on average once or more per week during a given monitoring period, confirmed through both self-reporting (annual usage surveys) and visual inspection, or through SUMs. Households that do not meet these criteria must be excluded from the project.

CLEAR also incorporates the use of PTDs, which indicate the number of days for which project technologies are available (at the participant's household, within the project boundary, and functioning) and in regular use (once or more per week on average) during a given monitoring period. This parameter is used for non-CTEC projects only. The number of PTDs is capped based on whether the project provides certain customer support actions described in the methodology. For a non-CTEC project to be eligible to claim up to 90% of maximum PTDs, the project proponent must take the customer support actions described in the methodology and provide details of how each condition has or will be met on the Project Information Cover Sheet during the design phase of the project. Project proponents who do not undertake all three of these customer support actions may claim up to 75% of maximum PTDs. These caps are waived when PTDs are estimated using SUMs.

Fraction of non-renewable biomass (fNRB)

The CLEAR methodology requires the use of fNRB values derived from the MoFuSS model and disallows the use of CDM TOOL30. Project proponents have three options to determine fNRB under the CLEAR methodology, all using the MoFuSS model:

- National or sub-national default values from CDM TOOL33 (version 3.0);

- Customized project area (not aligned with national or subnational
 boundaries) using the online MoFuSS Default Scenarios (MoFuSS-DS)
 interface; or
- Where applicable, project proponents may run the MoFuSS model using their own rigorously validated inputs. For demand-side parameters like per capita fuel consumption, input data from population-representative surveys meeting the 95/10 rule or national datasets are acceptable. For supply-side data like land cover, biomass stock, or biomass growth maps, validated maps from reputed international sources or national remote sensing agencies are acceptable.

452 453

454

If UNFCCC determines that a marginal approach to calculating fNRB is allowable, MoFuSS may be used to calculate marginal fNRB for a given project under the CLEAR methodology.

455 456 457

458

459

460

461

Wood to charcoal conversion

Based on the latest scientific evidence, the CLEAR methodology uses a 6:1 conversion factor, which is incorporated into upstream emission factor values and fNRB. Nonetheless, the methodology also includes emission factors based on a 4:1 conversion factor, to enable ICVCM Core Carbon Principles (CCP) eligibility.

462 463 464

465 466

Upstream emissions

Upstream emissions from the production, processing, transportation, and distribution of cooking fuels are included in the calculation of CO2e.

Upstream emissions apply to both baseline and project scenarios.

467 468 469

Leakage

The CLEAR methodology requires that projects apply a default adjustment factor of 2% to the emission reductions to approximate leakage emissions or evaluate the relevant potential sources of leakage and provide an evidencebased description and estimated quantification of each potential source and its relevance for the project.

475 Additionality

Project activities using the CLEAR methodology shall demonstrate that the project activity would have not occurred in the absence of the support of revenues from the carbon finance, and that the emission reductions achieved by the project would not occur as a result of any legal instrument. To demonstrate this, project proponents shall provide financial viability information and also conduct a regulatory analysis, barrier analysis, and a common practice analysis.

When required: Downward Adjustment

In order to assure compliance with section 4.7 of the <u>Standard: Application of the requirements of Chapter V.B (Methodologies) for the development and assessment of Article 6.4 mechanism methodologies</u>, the CLEAR methodology requires downward adjustments applied both initially and on an annual basis over the duration of the crediting period for both CTEC and non-CTEC projects that do not use the conservative minimum global default levels for baseline energy consumption.

Uncertainty, monitoring, and transparency

The methodology addresses uncertainty through a combination of conservative defaults and in-situ measurements and by requiring transparency and justification for all parameter inputs, assumptions, and decisions. This is done by requiring all project parameters utilized to be listed on a Project Information Cover Sheet (see <u>Appendix 1</u>) at the time of project design and updated at the time of each issuance.

CLEAR includes extensive sampling guidelines for all monitored parameters (included as <u>Appendix 10</u>), which clearly explain the type of variable (proportional or continuous variables), required precision, minimum sample size, and data collection methods (e.g., surveys, direct field measurements, or passive data-logging instruments). Note that the sampling requirements and guidance included in the CLEAR methodology may be revised in accordance with forthcoming Article 6.4 standard and guidance on sampling. In addition, to support project proponents, CLEAR is linked to a web-based app that calculates sample sizes for surveys and field-based measurements

review.

CLEAR also describes all the parameters that must be monitored throughout the crediting period (included in <u>Section 13</u>). This includes detailed descriptions of each parameter, the methods and frequency with which they must be monitored, and the purpose that the parameter serves. Where applicable, this section of the methodology includes specific QA/QC procedures, thresholds above or below which parameter values must be justified, and caps that parameters cannot exceed. All parameters are then listed in the <u>Project Information Cover Sheet</u> to facilitate external

(https://samplesizecalculatorforsknormalandproportion.streamlit.app/).

CLEAR addresses the risk of non-permanence by requiring a risk assessment at the project design stage; project proponents shall review and revise the risk assessment every five years from the start of the first crediting, and it must include reassessing fNRB for the project activity location. Further guidance may be provided pending the finalization and publication of an Article 6.4 reversal risk assessment tool.

- 529 The methodology is complemented by a calculator tool that facilitates
- 530 emission reduction calculations and flags values outside of expected ranges
- for additional justification. Requirements and best practices for conducting
- 532 baseline and project surveys, SUMs, KPTs, and CCTs, as well as sampling
- 533 requirements for these four categories of activities are provided in

these approaches should be considered high integrity.

534 Appendices 6-10.

535536

In addition to this written format, the methodology will be available via an interactive online platform, to make its application easier and more convenient.

538539

546

547548

549550

551

537

- Finally, 4C has developed an Explanation of Decisions document, which serves as a supplementary resource to the methodology. This document summarizes the key approaches for quantifying emission reductions from clean and improved cookstove activities as outlined in the CLEAR methodology. In addition, it provides the supporting arguments and evidence behind each key requirement, demonstrating why the credits resulting from adhering to
- . .

4. Applicability

This methodology can be applied to nearly all cooking energy transitions implemented at the household level that result in reductions of emissions of carbon dioxide (CO_2), methane (CH_4), and nitrous oxide (N_2O), collectively referred to on a CO_2e basis. Future iterations will also apply to institutional and commercial cookstove projects.

552553554

555

556

This methodology is applicable for project activities that would not occur in the absence of revenues from carbon finance, which must be demonstrated by following <u>Section 10: Additionality</u>. There is no restriction on the number of households involved or the total emission reductions achieved.

557558559

To qualify to use this methodology, projects must meet the following criteria:

560561562

563

564

565

566

567

568

- Project cookstoves shall be identified with a permanent unique identifier
 affixed to the cookstove in order to avoid double counting of emission
 reductions by other mitigation actions. Each identifier shall be linked to a
 specific household, and the project proponent shall have an identifier
 management system in place to manage the replacement of any
 cookstoves within the crediting period.
- All projects must identify and replace or retrofit malfunctioning cookstoves with a technology of comparable or better quality and

- thermal efficiency, or not claim emission reductions for households when such failures occur. Projects must include a documented plan for this process at the project design phase.
 - All biomass-burning project cookstove models must be tested for thermal efficiency using the ISO Standard 19867-1:2018. For wood-burning project technologies that use a griddle surface (e.g., plancha cookstoves for making tortillas), the thermal efficiency requirement is 20% or higher. Project cookstoves burning charcoal must achieve 30% or higher. All other biomass-burning project cookstoves must achieve 25% or higher.

Caveats and restrictions:

573

574575

576577

578

579580

581

582

583

584

585 586

587 588

589

590

591

592

593

594

595596

597

598599

600

601

602 603

604 605

- Given that improved cooking technologies can be assumed to have a technical operational lifetime of no more than 10 years (based on manufacturer reporting), the CLEAR methodology assumes that no lockin risks exist for cookstove carbon projects. That said, projects must follow any relevant carbon-crediting program requirements for avoiding longterm lock-in of fossil fuels for cooking.
- For artisanal cookstoves, at least three randomly selected samples of each cookstove model must be used when testing for ISO thermal efficiency, and when undertaking CCTs. The mean value from the three samples must be applied.
- For biogas projects, this methodology is only applicable to those using a CTEC approach. It calculates emission reductions only from cooking fuel consumption, not the use of generated slurry².
- For CTEC projects, fuel sale records can be used to track consumption of pellets, LPG and ethanol where LPG and ethanol fuel delivery systems are designed exclusively for use in a specific project technology. Projects should implement safeguards to prevent fuel diversion for non-project activities (e.g., sealed canisters, tamper-evident meters, delivery log cross-verification, etc.), and cross-check household fuel consumption tracked through fuel sale records against average project energy consumption values. Any outliers, defined as a household where the per person energy consumption for the given monitoring period is greater than 1.5 times the interquartile range (IQR) above the third quartile must be justified, or the household excluded.
- This methodology is not applicable for households who use electricity as their primary baseline fuel.³

² Methodologies that do allow credit for slurry include the most recent version of: Gold Standard <u>Methodology</u> for Animal Manure Management and Biogas Use for Thermal Energy Generation; <u>AMS-I.I.</u> - Biogas/biomass thermal applications for households/small users; and <u>AMS-I.E.</u> - Switch from non-renewable biomass for thermal applications by the user.

³ Use of electricity as a supplemental baseline fuel is permitted as it is not expected to be materially affected by project activities.

5. Environmental and Social Safeguards

608 Project proponents shall follow the social and environmental safeguard 609 requirements of the carbon-crediting program under which they intend to 610 generate carbon credits using the CLEAR methodology. Project proponents 611

intending to generate credits under Article 6.4 shall follow the requirements

outlined in the most recent version of the Article 6.4 Sustainable 612

Development Tool, available here. 613

614 This methodology was developed in alignment with the Principles for

Responsible Carbon Finance in Clean Cooking, which focus on integrity, 615

transparency, fairness, and sustainability. Project activities may describe 616

compliance with these principles as part of the Project Information Cover

618 Sheet.

617

619

626 627

628

629

630

631

632

607

6. Sustainable Development Goals (SDGs)

Project proponents shall follow the SDG requirements of the carbon-620 621 crediting program under which they intend to generate carbon credits using the CLEAR methodology. Project proponents intending to generate 622 credits under Article 6.4 shall follow the SDG requirements outlined in the 623 most recent version of the Article 6.4 Sustainable Development Tool, 624 available here. 625

7. Project Boundary

The project boundary corresponds to the physical, geographical sites where project technologies operate including the location from which baseline and project fuels are produced or collected.

The table below lists the emissions sources included in the project boundary. Where project devices use electricity, the project boundary includes the electricity generation system and, where applicable, also the transmission and distribution (T&D) system.

633
634

Emission sources included in the project boundary						
Scenario	Source	Gas	Included	Justification		
	Thermal energy generation (burning of fuel)	CO ₂	Yes	Major source of emissions		
		CH ₄	Yes	Can be significant for some fuels		
D 1:		N_2O	Yes	Can be significant for some fuels		
Baseline scenario	Fuel production and transport	CO ₂	Yes	Major source of emissions for some fuels		
		CH ₄	Yes	Can be significant for some fuels		
		N_2O	Yes	Can be significant for some fuels		
		CO ₂	Yes	Major source of emissions		

	Thermal energy generation (burning of fuel)	CH ₄	Yes	Can be significant for some fuels
		N_2O	Yes	Can be significant for some fuels
	Fuel production and transport Electricity generation, T&D	CO_2	Yes	Major source of emissions for some fuels
Project		CH ₄	Yes	Can be significant for some fuels
scenario		N_2O	Yes	Can be significant for some fuels
		CO ₂	Yes	Major source of emissions in some cases
		CH ₄	Yes	Can be significant in some cases
		N ₂ O	Yes	Can be significant in some cases

8. Baseline Scenario(s)

Under the CLEAR methodology, project proponents are required to use a pre-determined baseline scenario, defined as the continuation of the pre-activity scenario. The pre-activity scenario refers to the circumstances immediately prior to the implementation of the project and represents the existing conditions at the site where the activity will be implemented. Project proponents shall describe this scenario in detail.

The baseline scenario(s) shall be defined based on the existing baseline technologies and fuel consumption patterns that are being displaced by the project technology. The baseline scenario survey shall define fuel types, fuel mix proportions, and household size. It may also be used to support the common practice analysis.

Multiple baseline scenarios may be generated as appropriate (e.g., for multiple geographic areas with differing demographics, or multiple kinds of user groups with different baseline fuel mixes), and each compared against the project scenario.

Conversely, if a project is promoting multiple project technologies/fuels, a single baseline scenario can be assessed against multiple project scenarios. Project technologies with similar design and performance characteristics (defined as having the same combustion technology and within 10% thermal efficiency per ISO 19867-1) may be included under a single project scenario. If not, they must be treated as independent project scenarios and are monitored and calculated separately.

For non-CTEC projects opting to measure the baseline using the KPT rather than using a default value, and for CTEC projects opting to use the KPT to measure baseline fuel consumption, the baseline scenario(s) shall be identified and defined through the application of a baseline survey to the target population. The baseline scenario survey can also be used to meet the

customer support action of demonstrating that the project has selected technologies and fuels that meet the cooking needs of the target population.

For CTEC projects choosing to back-calculate the baseline, as well as non-CTEC projects opting to use a default value, the baseline scenario survey is needed for common practice analysis. These project types may use other data to establish baseline scenarios at the project design stage, as they will collect all the data necessary to substantiate emissions reductions from actual project households during the usage survey. Where possible, all scenarios will be cross-checked with recent, appropriate (geographically and demographically comparable) information from nationally- or regionally-representative surveys or reputable literature.⁴

All baseline scenarios shall be assessed for consistency with government policies and legal requirements, as detailed in <u>Section 10: Additionality</u>. In addition, any baseline scenario that is not aligned with government policies but instead constrains their outcomes shall be excluded. Baseline scenarios surveys should assess the percent of households in the target population with a functional technology that is equivalent to the project technology as part of the common practice additionality check, as detailed in <u>section 10</u>. Additionality. If greater than 30%, the project must provide a justification for the additionality of the project on the <u>Project Information Cover Sheet</u>.

 The baseline scenario shall remain valid for the duration of the reasonably expected remaining lifetime of the baseline cookstoves. In practice, this provision does not, by itself, require any change in the baseline scenario during the crediting period: if a baseline cookstove reaches the end of its lifetime during the crediting period, the project proponent may assume that the household, in the absence of the project, would naturally replace it with a cookstove of the same type and performance. This assumption reflects that cookstove project crediting periods are relatively short, and without targeted support, households are unlikely to transition to improved or cleaner cookstoves during this period due to persistent affordability and access barriers, as identified in the additionality analysis.

Additional requirements for non-CTEC and CTEC projects conducting baseline KPTs:

Proponents of non-CTEC or CTEC projects using the KPT to measure the baseline must also use the baseline scenario survey to collect data on the relative fuel use at different times of the year to address potential seasonal

⁴ Examples of reputable literature include sources that are peer-reviewed and/or published by a national or multi-national agency.

variation. The following question (or an appropriate variation) must be asked, "Relative to the amount of fuel you used this week, are there other times of the year when you use more fuel? If so, when? And/or less fuel? If so, when?". For additional information on addressing seasonal variation in fuel consumption, see Section 12: Monitoring Requirements.

For projects with KPT baselines, project proponents must also identify any mismatch between values documented during the baseline scenario and those reported by actual project households during the first project usage survey for primary fuel type and household size. This assessment shall be carried out using retrospective questions⁵ of project households during the first usage survey in any given household.

Where a material discrepancy between the baseline scenario and baseline observed in project households occurs, project proponents must either not claim emission reductions for households that do not conform to the baseline scenario profile or follow requirements on adjusting the parameter value to produce the lower emissions reduction estimate.

A material discrepancy is defined as more than a 10% absolute difference⁶ between the baseline scenario and the baseline observed in project households for the primary fuel type used⁷. For household size, a material discrepancy is defined as an estimate measured during a project usage scenario (Hs) that is greater than the baseline scenario estimate. When calculating the difference, the absolute difference should be relative to the project estimate. For example, if the proportion of use events with wood is 85% in the baseline and 80% in the project, the difference is estimated as (0.85-0.80)/0.80 = 6.2% (within the 10% threshold). Specific requirements for baseline and project scenario comparisons are provided in the table below.

Requirements for baseline and project scenario comparisons			
Potential material difference	Action required		

⁵ See <u>Appendix 6</u> for details.

⁶ CLEAR uses a greater than 10% variation as the definition of a material discrepancy throughout the methodology as this is appropriate given the distributed nature of the cooking technology intervention, the natural variation in human cooking behaviors, and the challenges of collecting real-word field data, especially in many low resource environments.
⁷ Parameters $PC_{b,i}$ and $PC_{p,j}$ are used in <u>Appendix 10</u> providing sampling requirements for these proportions of cooking events; they are used in the material difference calculation noted above, and not in emission reduction quantification equations. They are also presented in <u>Section 13</u>.

The number of people per household in the project is greater than in the baseline scenario.

The number of people per household (Hs) estimated from project usage surveys must be lowered to the baseline scenario.

The number of people per household in the project is less than in the baseline scenario.

No change

The primary fuel used for cooking events identified through the baseline scenario survey is more than 10% different from that determined retrospectively through the first project usage survey, and the difference results in baseline emissions that are lower than they would be if the proportion of primary fuel from the baseline and project scenarios matched. For example, if the baseline (from before the project technology was introduced) scenario indicates 85% wood use, and 15% charcoal use; and the first project usage survey indicates a baseline of 75% wood use and 25% charcoal use, then the emissions in the baseline scenario would be considered conservative, as charcoal has higher CO₂e emissions than wood per unit of useful energy delivered. If more than two fuels are used, the same process must be applied for all.

No change

The primary fuel used for cooking events identified through the baseline scenario survey is more than 10% different from that determined retrospectively through the first project usage survey and the difference results in baseline emissions that are higher than they would be if the proportion of primary fuel in baseline and project scenarios matched. For example, if the baseline scenario indicates 75% primary wood use, and 25% charcoal use; and the first project usage survey indicates a baseline of 85% wood use and 15% charcoal use (from before the project technology was introduced), then the emissions in the baseline scenario would be considered non-conservative, as charcoal has higher CO₂e emissions than wood per TJ of useful energy delivered. If more than two

The project must exclude the baseline energy consumption from non-primary fuels in the estimation of baseline emissions, or proportionately reduce the energy consumption of the primary fuel by the percent difference in primary fuel use between the baseline scenario and project-estimated baseline from the first project usage survey, whichever results in a lower baseline CO₂e emissions estimate.

fuels are used, the same process must be applied for all.	
applied for all.	

Sample size requirements for baseline scenario parameters are provided in <u>Appendix 10</u>, and the modes of data collection are delineated in the respective sections and parameter tables in <u>Section 11 (Quantification of GHG Emission Reductions)</u>.

9. Baseline Energy Consumption Defaults, Caps, and Flags

Global default: Non-CTEC projects may determine energy consumption in the baseline scenario by using a global default for fuelwood or charcoal consumption. This default can only be applied for projects where the baseline is predominantly wood or charcoal (more than 75% of cooking events with wood or charcoal, respectively, as determined via surveys).

The global default for baseline fuelwood consumption is 0.0012 TJ useful energy delivered/(person*year)⁸, which is assumed to be equivalent to 0.5 tonnes/(person*year)of air-dried wood, or 0.0078 TJ/(person*year).

The global default for baseline charcoal consumption is 0.00074 TJ useful energy delivered/(person*year)⁹, which is assumed to be equivalent to 0.1 tonnes/(person*year), or 0.00295 TJ/(person*year) for charcoal.

When fuels other than wood or charcoal are in the respective baselines, their energy use must be accounted for in the 0.0012 and 0.00074 TJ useful energy delivered/(person*year), respectively. These values reflect the minimum level of energy service required for household cooking.

As an alternative to using a static baseline representing the minimum level of energy service required for cooking, project proponents may use the

⁸ 0.5 tonnes of air-dried fuel wood with 0.0156 TJ/tonnes NCV, and thermal efficiency of 15%.

 $^{^{\}rm 9}$ 0.1 tonnes of charcoal with 0.0295 TJ/tonnes NCV, and thermal efficiency of 25%.

¹⁰ The energy for each fuel is estimated by applying the thermal efficiencies in Appendix 5 (e.g., 15% thermal efficiency for unimproved baseline wood cookstoves, 25% thermal efficiency for unimproved charcoal cookstoves, and 50% for gas and liquid fueled cookstoves) to the useful energy delivered and relative amount of cooking on each fuel type. For example, if surveys indicate in the baseline that 80% of cooking events are done on wood cookstoves and 20% on LPG cookstoves, then the baseline energy consumption would be as follows: Wood consumption: (0.80*0.0012 TJ useful energy delivered/(person*year)) / 15% thermal efficiency = 0.0091 TJ useful energy delivered/(person*year of wood energy; LPG 0.20*0.0012 TJ useful energy delivered/(person*year) / 50% = 0.00048 TJ useful energy delivered/(person*year) of LPG energy.

suppressed demand approach outlined in "<u>Addressing Suppressed Demand in Mechanism Methodologies</u>".

Baseline caps: Baseline energy consumption values (estimated with the KPT or back-calculated) for primary fuelwood users (75% of cooking events) are capped at 0.0047 TJ useful energy delivered/(person*year) (2.0 tonnes/(person*year)), or 0.031 TJ/(person*year)) of air-dried wood or a combination of wood and any other additional baseline fuels. Values above 0.0023 TJ useful energy delivered/(person*year) (1.0 tonnes/(person*year)) or 0.0156 TJ/(person*year)) of air-dried wood and additional baseline fuels are flagged for additional justification.

For baselines with charcoal as the primary fuel use, the cap is set at 0.00295 TJ useful energy delivered/(person*year) (0.40 tonnes/(person*year)), or 0.012 TJ/(person*year) of charcoal and any additional baseline fuels. Values above 0.0015 TJ useful energy delivered/(person*year) (0.20 tonnes/(person*year)), or 0.0059 TJ/(person*year) are flagged for further justification.

For mixed baseline scenarios (no primary fuel is used for more than 75% of cooking events) or those with other primary baseline fuels, the flags and caps are the same as those for primary charcoal baselines.¹¹

An overview of the baseline caps and flags is presented in the table below.

User group	Cap	Flag	Unit
Primary fuelwood	0.0047	> 0.0023	TJ useful energy delivered/(person*year)
users	0.031	0.0156	TJ/(person*year)
	2	>1.0	tonnes/(person*year)

TJ/(person*year) of charcoal, the useful energy delivered would be calculated using efficiency factors of 15% for wood and 25% for charcoal. This results in 0.0075 TJ/(person*year) of useful energy from wood and 0.008375 TJ/(person*year) from charcoal, for a total of 0.015875 TJ/(person*year) of useful energy delivered. Since this results in a mixed baseline of 47.3% energy delivered from wood and 52.7% delivered from charcoal, the mixed baseline cap of 0.00295 TJ useful energy delivered/(person*year) must be applied, and the useful energy must be reduced proportionally to stay within the allowable limit. The adjustment factor needed is 0.00295 / 0.015875 = 0.186. Applying this factor, the useful wood energy becomes 0.001395 TJ/(person*year), and the useful charcoal energy becomes 0.00156 TJ/(person*year). Converting these adjusted useful energy values back into total fuel

consumption, the wood component would be 0.0093 TJ/(person*year), and the charcoal

¹¹ If baseline energy consumption is measured at 0.050 TJ/(person*year) of wood and 0.0335

would be 0.00624 TJ/(person*year).

Primary charcoal	0.00295	> 0.0015	TJ useful energy delivered/(person*year)
users	0.012	0.0059	TJ/(person*year)
	0.4	>0.2	tonnes/(person*year)
Mixed/other	0.00295	> 0.0015	TJ useful energy delivered/(person*year)
primary baseline	0.012	0.0059	TJ/(person*year)
	0.4	>0.2	tonnes/(person*year)

When the flagged threshold is surpassed, projects must provide justification in the <u>Project Information Cover Sheet</u> for why a higher baseline is realistic in that project area¹². For example, such justifications could include the case of households using plancha cookstoves or areas where wood is relatively abundant.

10. Additionality

Project activities using this methodology shall demonstrate that the project activity would have not occurred in the absence of the support of revenues from carbon finance, and that the emission reductions achieved by the project would not occur as a result of any legal instrument. To demonstrate this, project proponents shall provide financial viability information and also conduct a regulatory analysis, barrier analysis, and a common practice analysis, as described below.

Financial additionality

The CLEAR methodology requires project proponents to include financial viability information, specifically:

 The increase in financial viability through carbon finance revenues (e.g., being able to reduce cookstove costs, being able to conduct awareness campaigns to convince the population to adopt the cookstove, secure financing, etc.); and
 The financial viability with and without carbon finance revenues, to

show that the activity depends on carbon finance to happen.

A suitable financial indicator for the financial viability of an Article 6.4 activity shall be used, such as the net present value or internal rate of return.

Regulatory analysis

The regulatory analysis shall demonstrate that the emission reductions achieved by the project are not occurring as a result of any legal instrument

 $^{^{12}}$ 4C will provide publicly-available guidance to Validation and Verification Bodies (VVBs) and rating agencies on evaluating these justifications.

820 (including laws, statutes, regulations, court orders, decrees, consent agreements, executive orders, permitting conditions or any other legally 821 binding mandates). Where an applicable legal instrument restricts or 822 prohibits a cooking fuel or technology (e.g., informal charcoal), the project 823 proponent shall provide credible evidence that households are not 824 825 switching away from the restricted fuel or technology because of the legal 826 restrictions and that the project activity is the only reason that fuel 827 consumption is changing.

828829

830

Project proponents shall conduct the regulatory analysis at the time of project validation and update it at each crediting period renewal, or more frequently if required by the host country or Article 6.4 requirements.

831832833

834835

836

The analysis shall be based on credible and current evidence and clearly justified. Acceptable supporting evidence includes official regulatory texts and government websites, expert legal opinion (if appropriate), peer-reviewed or grey literature, household surveys, and documentation from interviews with relevant regulatory agencies or implementation bodies.

837 838 839

If a relevant legal mandate comes into effect during the crediting period, the project may only continue claiming credits up to the date that mandate becomes legally effective.

841 842 843

840

Barrier analysis

Project proponents shall conduct a barrier analysis. Barriers may include:

845846847

844

 Knowledge barriers, such as lack of awareness of the health risks associated with using traditional cookstoves and fuels for cooking;

848849850851

 Financial barriers, specifically, the inability of households to afford transitioning to clean cooking solutions without the use of carbon revenue to reduce the upfront cost of cookstove acquisition and/or ongoing fuel costs;

853 854

852

 Infrastructural barriers, namely gaps in the supply of efficient technologies, access to operation and maintenance support and repairs, and fuel supply chains that may depend on carbon projects to arrange and facilitate access; and

855856

• Institutional, such as the inability of project proponents to service last-mile customers without additional funding.

857858859

860

Barriers that are unique to a proposed Article 6.4 project may only be used if the proposed activity depends on inputs that are proprietary to the

project proponent, such that it can only be implemented by the project proponent.

862863

861

The barrier analysis shall include the following components:

864

865 866

867

868

869

870871

872

873

- Identify and describe relevant barriers faced by the proposed project;
- Demonstrate that the barriers prevent cooking energy emissions from being reduced without carbon finance revenues;
- Demonstrate that there are no other programs or incentives, such as subsidies, that would incentivize this activity;
- Demonstrate that the incentives from carbon finance, such as free or reduced price cooking technologies and/or fuels, are the determinant element in overcoming the identified barriers;

874875

876877

In the case of cooking projects, the plausible alternative to the project activity that does not face barriers is assumed to be the continuation of the pre-activity scenario.

878 879

880

881

882

883

884

The barrier analysis shall be supported by credible evidence. Such evidence may include independent studies, publicly available surveys, relevant verifiable market data, household survey data, or data from national or international statistics but shall not include anecdotal evidence. The evidence shall be interpreted in a conservative manner (i.e., that it is unlikely that the effect of the barrier is overestimated).

885 886

887

For crediting period renewals, project proponents must demonstrate that the identified barriers still persist, and that carbon finance remains necessary to overcome them.

888 889 890

895

896

897

898

899

900

Common practice analysis

- 891 Project proponents shall conduct a common practice analysis. Common
- practice shall be assessed using the Market Penetration
- 893 Method (corresponding to *Approach B* in the <u>draft Article 6.4 Common</u>
- 894 <u>Practice Tool</u>), using the following steps.
 - Define the applicable geographical area for the common practice analysis. The applicable geographical area shall by default be the host country of the project activity, with results disaggregated by urban and rural households. For projects implemented in urban settings, only the national-level urban market penetration rate shall be used; for projects implemented in rural settings, only the national-level rural

market penetration rate shall be used. Where credible, recent and representative data are available at a more detailed sub-national level, the analysis may be conducted using that sub-regional geographical area. Project proponents may also disaggregate results by wealth quintiles or other nationally recognized income/wealth indices (such as those available in DHS surveys), where such data are available and credible, in order to better reflect affordability barriers to adoption for the target population.

- 2. Calculate the indicator of common practice. The indicator is count-based and calculated as the number of households in the target population with a functional technology that is equivalent to the project technology within the applicable geographical area (as defined in Step 1), not including those provided through carbon finance. An equivalent technology is one that meets all of the following criteria:
 - o Accomplishes the same cooking tasks as the project technology;
 - Has a thermal efficiency within ±10% of the project technology's thermal efficiency; and
 - Uses the same fuel(s).

3. Assess the market penetration rate by dividing the count-based indicator by the total number of households in the target market. If the market penetration rate is below a threshold (F(max)) of 30%, the technology shall be considered not common practice and shall pass this step of the additionality assessment. If the market penetration rate is 30% or greater, the technology shall be considered common practice, and the project shall provide additional justification to prove that it is additional. Such additional justification shall be provided on the Project Cover Information Sheet and shall reference acceptable data, as defined below.

The threshold of 30% reflects a reasonable bound for when a self-sustaining market for clean cooking technologies is likely to exist in low- and middle-income countries. While a rule of thumb often identifies a 20% penetration rate as a tipping point for a self-sustaining market. The threshold is set higher for clean cooking due to weak distribution and knowledge networks connecting urban and rural areas and the relatively small middle-class consumer segment with disposable income in low- and middle-income countries. Nonetheless, the option to provide further additionality justification is offered for specific circumstances where the universal 30% threshold is not

applicable, as the need for clean cooking in almost all least developed nations and many developing countries is so pervasive.

Data requirements

945 All calculated variables shall:

- Exclude technologies installed as a result of voluntary carbon finance activities;
 - Be based on recent (no more than three years old) and credible data sources; and
 - Include documentation of data sources, reference years, and all calculations.

Acceptable data sources may include national household energy surveys, census data, or other representative market studies. Where no such

sources are available, baseline surveys may be used as a last resort,

provided that they follow statistically robust sampling and are

956 documented transparently.

Where the available dataset reports only fuel type and not cookstove technology, and the fuel type alone does not clearly indicate whether the cookstove meets the equivalence definition (e.g. fuels such as charcoal or wood, which may be used in a variety of cookstove types), the project proponent shall use credible supplementary data sources to determine the proportion of users of that fuel who own and regularly use a functional equivalent technology. Where no such supplementary data are available, the proportion may be obtained from the baseline survey. For fuels that correspond to a specific technology (e.g., LPG, electricity, ethanol), the reported fuel shall be assumed to correspond directly to one functional cookstove.

Where functional status or thermal efficiency data are not directly available, project proponents shall apply conservative assumptions to classify equivalent technologies, with justification provided. Where only the primary cooking fuel or device is reported, this shall be interpreted as representing the main technology in regular use. Secondary cookstove ownership shall only be included where credible evidence demonstrates that the cookstove is functional and regularly used. Where data less than three years old are not available, the most recent credible dataset may be used, provided that a conservative adjustment is applied to reflect likely changes in penetration since the data were collected.

The project proponent shall further demonstrate additionality by applying any additional requirements of the carbon-crediting program under which

the project proponent seeks to issue credits using this methodology.

Additionality shall be reassessed at the renewal of the crediting period.

11. Quantification of GHG Emission Reductions

This methodology determines both baseline and project emissions by calculating GHG emissions from electricity, renewable and non-renewable fuels.

Electricity can include both grid and off-grid sources. Emissions from grid electricity are country-specific and calculated based on marginal emission factors from the International Financial Institutions Technical Working Group on GHG Accounting, (provided in <u>Appendix 2: Grid Emission Factors</u>) or based on marginal emission factors provided by the relevant national authority. Emissions from off-grid sources are technology-specific (provided in <u>Appendix 3: Off-Grid Emission Factors for Select Technologies</u>). The off-grid component includes both individual household systems and mini-grids using either single or multiple sources of power.

Renewable fuels include the renewable fraction of fuelwood and charcoal, waste biomass like crop residues and dung, processed biomass like briquettes and pellets from fully renewable sources, bioethanol, biogas, and solar.

Non-renewable fuels refer to the non-renewable fraction of fuelwood and charcoal, as well as fossil fuels such as LPG, coal, and kerosene.

To account for renewable and non-renewable woody biomass, the methodology utilizes fNRB.

Methodology parameters are calculated differently for CTEC and non-CTEC projects, and therefore are presented separately in this methodology.

Emissions are calculated on an energy basis, for which the conversions from mass to energy are conducted using Equation (1):

$$EC_{r} = FC_{r} \times NCV_{r} \tag{1}$$

Where:

Parameter	Description	Unit
-----------	-------------	------

EC_{x}	Energy consumption for the respective fuel and scenario <i>x</i>	TJ
FC_x	Fuel consumption for the respective fuel and	tonnes
	scenario x	
NCV_x	Net calorific value for fuel x (see Appendix 5)	TJ/tonnes

11.1. CTEC Projects

Energy consumption for CTEC projects is determined by continuously measuring fuel or energy consumption directly through the use of built-in or external data loggers, or by tracking all fuel sales, to determine the total energy use for all project technology cookstoves in all project households. Two options are provided for determining emission reductions for CTEC projects.

Under the first option (see <u>Section 11.1.1</u>), baseline energy consumption is back-calculated from project cookstove energy consumption using specific energy consumption ratios of the baseline and project cookstoves, determined via CCTs performed on each cookstove model.

Under the second option (see <u>Section 11.1.2</u>), the KPT is used to estimate the emission reductions produced per TJ of the continuously tracked project technology energy consumption, and then scaled by the total tracked project energy consumption for the given monitoring period to determine the total emission reductions.

11.1.1. CTEC projects using the back-calculation approach for displaced baseline energy consumption

11.1.1.1. Baseline back-calculation using specific fuel consumption ratios

1044 Baseline emissions for CTEC projects using the back-calculation option are calculated using Equation (2)¹³.

$$BE_{y} = \sum_{i} \left(EC_{d-base,i,y} \times \left(fNRB_{i} \times EF_{base,i,CO2} + EF_{base,i,nonCO2} \right) \right) + \sum_{i} UE_{base,i,y}$$
 (2)

¹³ In this methodology, the subscript i is used to represent either a fuel alone or a fuel–cookstove combination, depending on the parameter being referenced. For parameters that are fuel-specific (e.g., fNRB), *i* refers to the fuel only (e.g., fuelwood, charcoal, LPG). For parameters that are specific to the combination of fuel and cookstove technology (e.g., thermal efficiency, emissions factors), *i* refers to the unique fuel–cookstove combination (e.g., fuelwood with three-stone fire, fuelwood with a high efficiency wood cookstove).

1048 Where:

Parameter	Description	Unit
$BE_{\mathcal{Y}}$	Baseline emissions during year <i>y</i>	tCO ₂ e
EC _{d-base,i,y}	Displaced energy consumption of fuel <i>i</i> in baseline scenario in year <i>y</i> . Where fuels such as pellets and briquettes are made from a mix of renewable and non-renewable sources (e.g., renewable agricultural waste and non-renewable wood), each source should be considered its own fuel ¹⁴ . This parameter is	TJ
$fNRB_i$	determined following <u>Equation 2</u> . Fraction of non-renewable woody biomass fuel <i>i</i> consumed. This parameter varies between zero and 100% for fuelwood, charcoal, and other solid biomass fuels that are not fully renewable. When renewable biomass fuels are used (defined above), this parameter is equal to zero. When fossil fuels are used, it is equal to 100%.	%
$EF_{base,i,CO2}$	CO ₂ emission factor for baseline fuel <i>i</i>	tCO₂e/TJ
EF _{base,i,nonCO2}	Non-CO ₂ emission factor for baseline fuel <i>i</i>	tCO₂e/TJ
$UE_{base,i,y}$	Upstream emissions for baseline fuel <i>i</i> in year <i>y</i> , determined following <u>Section 11.3: Upstream</u> <u>Emissions</u>	tCO₂e

This approach calculates baseline energy consumption for each technology that is displaced by determining the amount of equivalent energy required for the baseline technology(ies) to provide the same level of service as the project technology according to its continuously tracked energy consumption. This estimation is done using specific fuel consumption ratios, derived from CCTs performed on each of the baseline and project technology types. When multiple fuel-stove combinations are used in the baseline by the end user in the same premises, the proportional use shall be established from surveys or stove use monitoring (See <u>Appendix 9</u> for SUMs guidance). For example, if baseline cookstove use is estimated as 50% of cooking events performed on a three-stone fire, 10% on a charcoal cookstove, and 40% on an LPG cookstove, then the baseline energy consumption that the project technologies displace shall be apportioned proportionately in accordance with Equation 3:

¹⁴ For example: If a pellet fuel consists of 60% wood and 40% sugarcane bagasse (on a TJ basis), and the energy consumption for these pellets is 0.05 TJ/(person*year), then there would be two constituent fuels to sum over; $EC_{d-base,pellet-wood} = 0.03$ TJ/(person*year), and $EC_{d-base,pellet-bagasse} = 0.02$ TJ/(person*year), each with its own respective fNRB, EF, and UE.

 $EC_{d-base,i,y} = tEC_{proj,j,y} \times tPC_{b,i} \times \left(\frac{SC_{b,i}}{SC_{p,j}}\right)$ (3)

1066 Where:

Parameter	Description	Unit
$EC_{d-base,i,y}$	Displaced energy consumption of fuel <i>i</i> in	TJ
	baseline scenario in year <i>y</i>	
$tEC_{proj,j,y}$	Total tracked energy consumption of project	TJ
1 3/3/2	fuel <i>j</i> for CTEC projects in year <i>y</i>	
$tPC_{b,i}$	Proportion of cooking events conducted	%
	using baseline fuel-stove combination <i>i</i>	
$SC_{b,i}$	Specific energy consumption of a baseline	MJ/kg food
	fuel-stove combination <i>i</i> to cook a given	
	amount of food	
$SC_{p,j}$	Specific energy consumption of a project fuel-	MJ/kg food
	stove combination <i>j</i> to cook a given amount of	
	food	

Baseline fuel consumption caps and flags described in <u>Section 9: Baseline</u> <u>Energy Consumption Defaults and Caps</u> apply.

When required: Downward adjustment in the calendar year of the start date of the crediting period for CTEC projects back-calculating the baseline

For CTEC projects deriving baseline energy consumption from back-calculating the displaced baseline energy consumption based on relative specific consumptions between baseline and project technologies, an initial downward adjustment is applied to ensure that baseline emissions remain below a conservatively determined BAU level and that credited emission reductions are not overstated. The specific consumptions for each baseline fuel-stove combination ($SC_{b,i}$) shall be determined using the lower bounds of the 95 percent confidence intervals when estimating $EC_{d-base,i,v}$.

 The unadjusted baseline emissions during the calendar year of the start date of the first crediting period ($BE_{unadj,y1}$), are calculated using Equations (2), (3) and (27), based on the mean values obtained for the specific energy consumption of each baseline fuel-stove combination $SC_{b,i}$.

The downward adjusted baseline emissions during the calendar year of the start date of the first crediting period, $BE_{adj,y1}$ are calculated using Equations (2), (3) and (27), based on the lower bounds of the one-sided ¹⁵ 95 percent confidence

¹⁵ One-sided 95% confidence intervals place all uncertainty in one direction to give a bound the true mean exceeds with 95% confidence, supporting conservative downward adjustments in baseline estimates.

1091 intervals of the specific energy consumption for each baseline fuel-stove combination $SC_{b,i}$.

The downward adjusted baseline emissions must be less than or equal to the minimum downward adjustment, as specified in the <u>Article 6.4 Standard:</u>

<u>Setting the baseline in mechanism methodologies</u>. The minimum downward adjusted baseline emissions for the first calendar year of the crediting period shall be calculated using Equation (4):

$$BE_{adj,min,y1} = BE_{unadj,y1} - (BE_{unadj,y1} - PE_{y1}) * 0.05$$
 (4)

1101 Where: 1102

Parameter	Description	Unit
$BE_{adj,min,y1}$	Minimum downward adjusted baseline emissions	tCO ₂ e
	during year y_1	
$BE_{unadj,y1}$	Unadjusted baseline emissions during year y_1	tCO ₂ e
PE_{y1}	Project emissions during year y_1	tCO ₂ e
y_1	Calendar year of the start date of the first crediting	
	period	

The final downward adjusted baseline emissions for the calendar year of the start date of the first crediting period is then calculated using Equation (5):

$$BE_{final,y1} = \min(BE_{adj,min,y1}, BE_{adj,y1}) \tag{5}$$

Where:

Parameter	Description	Unit
$BE_{final,y1}$	Final downward adjusted baseline emissions	tCO ₂ e
	during year y_1	
$BE_{adj,min,y1}$	Minimum downward adjusted baseline emissions	tCO ₂ e
	during year y_1	
$BE_{adj,y1}$	Downward adjusted baseline emissions during	tCO ₂ e
3.5	year y_1	
y_1	Calendar year of the start date of the first crediting	
	period	

Downward adjustment in subsequent years: For each calendar year after the first crediting year, a downward adjustment to the baseline emissions shall be calculated by applying an annual reduction of 1% relative to the final adjusted baseline of year 1 using Equation (6):

$$BE_{final,y2+} = BE_{final,y1} * (1 - 0.01) * (y_{2+} - y_1)$$
(6)

1117 Where:

Parameter Description Unit

$BE_{final,y2+}$	Final downward adjusted baseline emissions	tCO ₂ e
	during year y_{2+}	
$BE_{final,y1}$	Final downward adjusted baseline emissions	tCO ₂ e
	during year y_1	
y_{2+}	Calendar year after the first crediting year	
y_1	Calendar year of the start date of the first crediting	
	period	

1119 1120

1121

The 1% annual rate is intended to ensure that baselines remain ambitious over time, while acknowledging the economic realities of clean cooking projects, which often face significant affordability barriers.

112211231124

11.1.1.2. Project

1125 Project 1126 of proje

Project emissions for CTEC projects using the tracked energy consumption of project technology option are calculated using Equation (7).

1127

$$PE_{y} = \sum_{j} \left(tEC_{proj,j,y} \times \left(fNRB_{i} \times EF_{proj,j,CO2} + EF_{proj,j,nonCO2} \right) \right) + \sum_{j} UE_{proj,j,y} + PE_{elec,y}$$
 (7)

11281129

Where:

Parameter	Description	Unit
PE_y	Project emissions during year <i>y</i>	tCO ₂ e
$tEC_{proj,j,y}$	Total tracked energy consumption of project fuel <i>j</i> for CTEC projects in year <i>y</i> . Where fuels such as pellets and briquettes are made from a mix of renewable and non-renewable sources (e.g., renewable agricultural waste and non-renewable wood), each source should be considered its own fuel (See example in <u>footnote 17</u>).	TJ
	For any given project participant or technology, if more than half of the possible CTEC data for a monitoring period is missing, only available CTEC data may be included in emission reduction calculations. If missing CTEC data for a given project participant or technology consists of less than half of the possible data, then the project proponent may use the 25th percentile of the available tracked project energy consumption for that project participant or technology as a conservative replacement of the missing data.	
$fNRB_{j}$	Fraction of non-renewable woody biomass fuel <i>j</i>	%
	consumed. This parameter varies between zero	

	and 100% for fuelwood, charcoal, and other solid biomass fuels that are not fully renewable. When renewable biomass fuels are used (defined above), this parameter is equal to zero. When	
	fossil fuels are used, it is equal to 100%.	
$EF_{proj,j,CO2}$	CO_2 emission factor for project fuel j	tCO₂e/TJ
$EF_{proj,j,nonCO2}$	Non-CO ₂ emission factor for project fuel <i>j</i>	tCO₂e/TJ
$UE_{proj,j,y}$	Upstream emissions for project fuel <i>j in year y</i> ,	tCO ₂ e
. 3.3.5	determined following <u>Section 11.3: <i>Upstream</i></u>	
	<u>Emissions</u>	
$PE_{elec,y}$	Emissions from electric energy consumption in	tCO ₂ e
	year <i>y</i>	

1131 The continuously tracked energy consumption in the project scenario is determined by continuously tracking fuel or electricity for the project 1132 1133 technology, or from fuel sales.

1135 Other, non-project cookstoves that may be in use in the project scenario are ignored, and the baseline fuel consumption calculation only includes that 1136 which is displaced by the project cookstove. 1137

1139 For CTEC project cookstoves:

$$tEC_{proj,j,y} = \sum_{h} tEC_{proj,j,h,y}$$
 (8)

1140 Where:

1141

1134

1138

Parameter	Description	Unit
$tEC_{proj,j,y}$	$tEC_{proj,i,v}$ Total tracked energy consumption of project fuel	
1 3.5.0	j for CTEC projects in year y	
$tEC_{proj,j,h,y}$	Tracked energy consumption of project fuel j in	TJ
, 33. 3	project household <i>h</i> in year <i>y</i>	
h	Project households	Number

1142 1143

For project energy sources other than electricity, use Equation (1) to convert fuel masses to fuel energy.

1144 1145 1146

1147

1148

If the project cookstove uses electricity, coming from either the national grid or an off-grid system(s) using renewable or non-renewable energy sources, its project emissions and electricity consumption must be calculated using Equation (9) and Equation (10), and/or Equation (11).

$$PE_{elec,y} = 10^{-6} \times \left[\frac{^{tEC_{proj,grid,y} \times EF_{proj,grid,y}}}{^{1-TDL_y}} + \left(tEC_{proj,offgrid,y} \times \sum_{k} f_{k,y} \times EF_{proj,offgrid,k} \right) \right]$$
(9)

1151 Where:

1152

Parameter	Description	Unit
$PE_{elec,y}$	Emissions from electric energy consumption	tCO ₂ e
	in year <i>y</i>	
$tEC_{proj,grid,y}$	Tracked grid electricity consumption for	kWh
	cooking	
$EF_{proj,grid,y}$	Country-specific marginal grid emission	gCO2e/kWh
	factor in year y. See <u>Appendix 2: Grid Emission</u>	
	<u>Factors</u>	
$tEC_{proj,offgrid,y}$	Tracked off-grid electricity consumption for	kWh
	cooking in year y	
$f_{k,y}$	Fraction of off-grid electricity provided by	%
	source <i>k</i> in year <i>y</i>	
$EF_{proj,offgrid,k}$	Off-grid emission factor for source <i>k</i> . This is a	gCO₂e/kWh
	technology-specific value provided in	
	Appendix 3: Off-Grid Emission Factors for	
	<u>Select Technologies</u>	
TDL_y	Average technical T&D losses for providing	%
	electricity in year <i>y</i>	
10^{-6}	Unit conversion for grams CO₂e to tonnes	
	CO ₂ e	

1153 1154

Electricity consumption shall be measured, using calibrated equipment¹⁶ such as a built-in or external power meter, from all project electric cookstoves using Equation (10) and/or Equation (11).

11561157

1155

$$tEC_{proj,grid,y} = \sum_{h} tEC_{proj,grid,h,y}$$
 (10)

$$tEC_{proj,offgrid,y} = \sum_{h} tEC_{proj,offgrid,h,y}$$
 (11)

1158 Where:

Parameter	Description	Unit
$tEC_{proj,grid,y}$	Tracked grid electricity consumption for	kWh
	cooking in year <i>y</i>	
$tEC_{proj,grid,h,y}$	Tracked grid electricity consumed for cooking	kWh
. 370 770	in household <i>h</i> in year <i>y</i>	

¹⁶ Calibrated according to manufacturer recommendations and/or relevant national requirements as applicable.

$tEC_{proj,offgrid,i}$	Tracked off-grid electricity consumption for cooking in year y	kWh
$tEC_{proj,offgrid,h}$	y Tracked off-grid electricity consumed for	kWh
	cooking in household <i>h</i> in year <i>y</i>	
h	Project households	Number

11.1.2. CTEC projects using tracked energy consumption and KPTs

This option calculates the emissions in the baseline and project scenarios using metered data for CTEC projects and KPTs.

11.1.2.1. Baseline

For this option the average baseline emissions are estimated using a KPT.

Baseline emissions for CTEC projects using this option are calculated using Equation (12).

$$BE_y = EQ_{base} \times tEC_{proj,j,y} + \sum_i UE_{base,i,y}$$
 (12)

1170 Where:

Parameter	Description	Unit
BE_{y}	Baseline emissions during year <i>y</i>	tCO₂e
EQ_{base}	Emissions quotient for the consumption of energy for cooking in baseline scenario	tCO₂e/TJ
	energy for cooking in baseline scenario	or tCO₂e/kWh
$tEC_{proj,j,y}$	Total tracked energy consumption of project	TJ or kWh
	fuel j for CTEC projects in year y (see Equation 7)	
$UE_{base,i,y}$	Upstream emissions for baseline fuel i in year y ,	tCO ₂ e
	determined following <u>Section 11.3: Upstream</u>	
	<u>Emissions</u>	

This approach involves determining a baseline emission quotient per unit project fuel by using the energy consumption through its measurement by an ex-ante KPT of the baseline scenario and an ex-post KPT of the project scenario, using Equation (13).

$$EQ_{base} = \frac{\sum_{i} [EC_{base,KPT,i} \times (fNRB_{i} \times EF_{base,i,CO2} + EF_{base,i,nonCO2})]}{tEC_{proj,KPT,i-project}}$$
(13)

Where:

Parameter	Description	Unit
EQ_{base}	Emissions quotient for the	tCO ₂ e/TJ
	consumption of energy for cooking	or tCO₂e/kWh
	in baseline scenario	
$EC_{base,KPT,i}$	Energy consumption of each	TJ/(person*year)
	baseline fuel <i>i</i> for CTEC projects	
	based on baseline KPT. Where fuels	
	such as pellets and briquettes are	
	made from a mix of renewable and	
	non-renewable sources (e.g.,	
	renewable agricultural waste and	
	non-renewable wood), each source	
	should be considered its own fuel.	
f N D D	(See example in <u>footnote 17</u>)	%
$fNRB_i$	Fraction of non-renewable woody biomass fuel <i>i</i> consumed. This	70
	parameter varies between zero and	
	100% for fuelwood, charcoal, and	
	other solid biomass fuels that are not	
	fully renewable. When renewable	
	biomass fuels are used (defined	
	above), this parameter is equal to	
	zero. When fossil fuels are used, it is	
	equal to 100%.	
$EF_{base,i,CO2}$	CO_2 emission factor for baseline fuel i	tCO₂e/TJ
$EF_{base,i,nonCO2}$	Non-CO ₂ emission factor for baseline	tCO₂e/TJ
	fuel i	
$tEC_{proj,KPT,j-project}$	Tracked energy consumption of	TJ/(person*year)
	project fuel <i>j</i> for project cookstove(s)	or kWh/(person*
	only from project KPT	year)

For baseline energy sources $EC_{base,KPT,i}$ other than electricity, use Equation (1) to convert fuel masses to fuel energy.

If project cookstove energy use is in the form of electricity, then the equation will result in a quotient in terms of tCO_2e/kWh .

Baseline fuel consumption caps and flags described in <u>Section 9: Baseline</u> <u>Energy Consumption Defaults and Caps</u> apply.

 When required: Downward adjustment in the calendar year of the start date of the crediting period for CTEC projects using the KPT

For CTEC projects deriving baseline energy consumption from KPTs, an initial downward adjustment is applied to ensure that baseline emissions remain below a conservatively determined BAU level and that credited emission reductions are not overstated. To account for sampling uncertainty, the baseline energy consumption $EC_{base,KPT,i}$ shall be determined using the lower bounds of the 95 percent confidence intervals for each respective fuel (i) in the baseline.

The unadjusted baseline emissions during the calendar year of the start date of the first crediting period, $BE_{unadj,y1}$ are calculated using Equations (12), (13) and (27), based on the mean value of the baseline energy consumption $EC_{base,KPT,i}$.

The downward adjusted baseline emissions during the calendar year of the start date of the first crediting period, $BE_{adj,y1}$ are calculated using Equations (12), (13) and (27), based on the lower bounds of the one-sided 95 percent confidence interval of the baseline energy consumption $EC_{base,KPT,i}$.

The downward adjusted baseline emissions must be less than or equal to the minimum downward adjustment, as specified in the <u>Article 6.4 Standard:</u>
<u>Setting the baseline in mechanism methodologies</u>. The minimum downward adjusted baseline emissions for the first calendar year of the crediting period shall be calculated using <u>Equation (4)</u>. The final downward adjusted baseline emissions for the calendar year of the start date of the first crediting period is then calculated using <u>Equation (5)</u>.

Downward adjustment in subsequent years: For each calendar year after the first crediting year, a downward adjustment to the baseline emissions shall be calculated by applying an annual reduction of 1% relative to the final adjusted baseline of year 1, using <u>Equation (6)</u>.

11.1.2.2. Project

For this option the average project emissions are estimated using a KPT.

Project emissions for CTEC projects using this option are calculated using Equation (14).

$$PE_{y} = EQ_{proj} \times tEC_{proj,j,y} + \sum_{j} UE_{proj,j,y} + PE_{elec,y}$$
(14)

1230 Where:

ParameterDescriptionUnit PE_y Project emissions during year y tCO_2e EQ_{proj} Emissions quotient for the consumption of energy for cooking in project scenario in year y tCO_2e/tV

$tEC_{proj,j,y}$	Total tracked energy consumption of project	TJ or kWh
, 3,3,0	fuel <i>j</i> for CTEC projects in year <i>y</i>	
$UE_{proj,j,y}$	Upstream emissions for project fuel <i>j</i> in year	tCO₂e
. 333	y, determined following <u>Section 11.3:</u>	
	<u>Upstream Emissions</u>	
$PE_{elec,y}$	Emissions from electric energy consumption	tCO₂e
	in year y (See <u>Equation 9</u>)	

This approach for determining energy consumption in the project scenario requires quantifying the energy consumption of all technologies used in the project scenario (including any baseline technologies still in use) based on a project KPT, using metered energy consumption data for the project cookstove specific to the KPT period where available. Where metered energy consumption is not available specific to the KPT period, the traditional fuel-weighing KPT approach must be used. Fuel-weighing must always be used for fuel consumption based on sales data. To link total emission reductions with the amount of tracked project fuel consumption, the emission reductions as measured during the KPTs are normalized by project fuel consumption and scaled by the amount of tracked project fuel consumption, as shown in Equation (15).

$$EQ_{proj} = \frac{\sum_{j} [tEC_{proj,KPT,j} \times (fNRB_i \times EF_{proj,j,CO2} + EF_{proj,j,nonCO2})]}{tEC_{proj,KPT,j-project}}$$
(15)

Where:

Parameter	Description	Unit
EQ_{proj}	Emissions quotient for the	tCO₂e/TJ
. ,	consumption of energy for cooking	or
	in project scenario in year <i>y</i>	tCO₂e/kWh
tEC _{proj,KPT,j}	Energy consumption of each fuel <i>j</i> used in project households from project KPT for CTEC projects. Where fuels such as pellets and briquettes are made from a mix of renewable and non-renewable sources (e.g., renewable agricultural waste and non-renewable wood), each source should be considered its own fuel. (See example in footnote 17)	TJ/(person*year)

$fNRB_{j}$	Fraction of non-renewable woody biomass fuel <i>j</i> consumed. This parameter varies between zero and 100% for fuelwood, charcoal, and other solid biomass fuels that are not fully renewable. When renewable biomass fuels are used (defined above), this parameter is equal to zero. When fossil fuels are used, it is equal to 100%.	%
$EF_{proj,j,CO2}$	CO_2 emission factor for project fuel j	tCO₂e/TJ
$EF_{proj,j,nonCO2}$	Non-CO ₂ emission factor for project fuel j	tCO ₂ e/TJ
$tEC_{proj,KPT,j-project}$	Tracked energy consumption of project fuel <i>j</i> for project cookstove(s) only from project KPT	TJ/(person*year) or kWh/(person*year)

For continuously tracked project energy sources $tEC_{proj,i}$ other than electricity, apply Equation (1) to convert fuel masses to fuel energy. This equation excludes any consumption of electricity in the numerator.

If the project cookstove uses electricity, then the equation will result in a quotient in terms of tCO_2e/kWh .

For determining emissions from energy consumption from electric technologies $PE_{elec,y}$ apply Equation (9), Equation (10), and/or Equation (11).

11.1.3. Emission reductions for CTEC projects

1261 Emission reductions for CTEC projects are calculated using Equation (16).

$$ER_{y} = \left(BE_{final,y} - PE_{y}\right)\left(1 - LE_{y}\right) \tag{16}$$

Where:

Parameter	Description	Unit
ER_{y}	Emission reductions for the project during year	tCO ₂ e
	y	
$BE_{final,y}$	Baseline emissions during year y (downward-	tCO ₂ e
	adjusted when required)	
PE_{y}	Project emissions during year <i>y</i>	tCO ₂ e
$LE_{\mathcal{Y}}$	Percentage deduction to account for leakage	%
	emissions during year <i>y</i>	

All projects shall either apply a default adjustment factor of 2% to the emission reductions to approximate leakage emissions, or evaluate the relevant potential sources of leakage and provide an evidence-based description and estimated quantification of each potential source and its relevance for the project.

If utilizing option 2, for each source for which the leakage assessment expects an increase in fuel consumption by non-project households attributable to the project activity, then calculations must be undertaken to account for the leakage from this source. Leakage is either calculated as a quantitative emissions volume (tCO_{2e}) or as a percentage of total emission reductions. The project documentation shall include a projection of leakage emissions based on available data and information. The monitoring plan must include monitoring parameters to be registered during the leakage investigation every two years to populate the leakage calculation.

When using option 2, the project proponent must conduct a leakage investigation every two years using relevant methods. For example, surveys to determine parameters for the leakage calculation may be combined with project monitoring surveys, as is applicable. Monitoring plans should include field-based measurement methods, especially for the quantification of fuel, as data on fuel use estimated via surveys are often insufficiently accurate.

11.2. Non-CTEC projects

Non-CTEC projects may combine baseline and project alternatives as preferred.

11.2.1. Baseline emissions for non-CTEC projects

Baseline emissions for non-CTEC projects are calculated using Equation (17).

 $BE_{y} = \sum_{i} \left(EC_{base,i,y} \times (fNRB_{i} \times EF_{base,i,CO2} + EF_{base,i,nonCO2}) \right) + \sum_{i} UE_{base,i,y}$ (17)

Where:

Parameter	Description	Unit
$BE_{\mathcal{Y}}$	Baseline emissions during year <i>y</i>	tCO ₂ e
$EC_{base,i,y}$	Consumption of fuel i in baseline scenario in year	TJ
	y. Where fuels such as pellets and briquettes are	
	made from a mix of renewable and non-	
	renewable sources (e.g., renewable agricultural	
	waste and non-renewable wood), each source	

	should be considered its own fuel. (See example in footnote 17)	
$fNRB_i$	Fraction of non-renewable woody biomass fuel <i>i</i> consumed. This parameter varies between zero and 100% for fuelwood, charcoal, and other solid biomass fuels that are not fully renewable. When renewable biomass fuels are used (defined above), this parameter is equal to zero. When fossil fuels are used, it is equal to 100%.	%
$EF_{base,i,CO2}$	CO_2 emission factor for baseline fuel <i>i</i>	tCO2e/TJ
$EF_{base,i,nonCO2}$	Non-CO ₂ emission factor for baseline fuel <i>i</i>	tCO ₂ e/TJ
$UE_{base,i,y}$	Upstream emissions for baseline fuel <i>i</i> in year <i>y</i> , determined following <u>Section 11.3: Upstream</u> <u>Emissions</u>	tCO₂e

Non-CTEC projects may choose from two different approaches to determine energy consumption in the baseline scenario: measuring fuel consumption using a baseline KPT or using a global default for fuelwood or charcoal consumption, as described in <u>Section 9: Baseline Energy Consumption</u> <u>Defaults and Caps</u>.

Projects may determine non-continuously tracked energy consumption by conducting an ex-ante KPT of the baseline scenario, using Equations (18) and (19). The resulting baseline fuel consumption calculations are subject to the caps and flags described in <u>Section 9: Baseline Energy Consumption</u> <u>Defaults and Caps</u>.

$$EC_{base,i,y} = H_s \times ntEC_{base,i,y} \times \frac{PTD_{h,\Psi,y}}{CD}$$
(18)

$$PTD_{h,\Psi,y} = \Psi_y \times \sum_h Days_{y,h}$$
 (19)

For baseline energy sources other than electricity, use <u>Equation (1)</u> to convert fuel masses to fuel energy.

Where:

Parameter	Description	Unit
$EC_{base,i,y}$	Consumption of fuel <i>i</i> in baseline scenario	TJ
	in year <i>y</i>	
$H_{\scriptscriptstyle S}$	Average household size (persons per	Number
	household, regardless of age or gender)	

$ntEC_{base,i,y}$	Energy consumption of baseline fuel <i>i</i> for non-CTEC projects taken from global default baseline energy consumption value, or results from baseline KPT	TJ/(person*year)
$PTD_{h,\Psi,y}$	PTDs of the monitoring period during year <i>y</i>	Number
Ψ_{y}	Percent of project households with cookstoves present, where project cookstove is used at least once per week, determined via survey and visual observation in year <i>y</i> , or estimated with SUMs	%
$Days_{y,h}$	Number of total possible project- technology days during the year <i>y</i> in household <i>h</i>	Number
CD	Days in a calendar year <i>y</i> . Use 366 for leap years, 365 for other years.	Number

When required: Downward adjustment in the calendar year of the start date of the crediting period for non-CTEC projects

For non-CTEC projects deriving baseline energy consumption from KPTs, an initial downward adjustment is applied to ensure that baseline emissions remain below a conservatively determined BAU level and that credited emission reductions are not overstated. The baseline energy consumption $ntEC_{base,i,y}$ shall be determined using the lower bounds of the 95 percent confidence intervals for each respective fuel (i) in the baseline $ntEC_{base,i,y}$.

In addition, for the parameter representing the percent of project households with cookstoves present, where the project cookstove is used at least once per week, a cap of 90% or 75% shall be applied, even if monitoring results indicate a higher usage rate, unless PTDs are estimated using SUMs. The applicable cap depends on whether the project undertakes customer support actions as described below. These measures collectively address baseline uncertainty and potential overestimation of project usage and constitute the initial downward adjustment required under Section 7 of the https://example.com/Article 6.4 Standard: Setting the baseline in mechanism methodologies.

The unadjusted baseline emissions during the calendar year of the start date of the first crediting period, $BE_{unadj,y1}$ are therefore calculated using equations (17), (18), (19) and (27), based on the mean values of the baseline energy consumption for each fuel $ntEC_{base,i,y}$ and without the application of a cap on Ψ_{v1} .

The downward adjusted baseline emissions during the calendar year of the start date of the first crediting period, $BE_{adj,y1}$ are therefore calculated using equations (17), (18), (19) and (27), based on the lower bounds of the 95 percent confidence intervals of the baseline energy consumption $ntEC_{base.i.v.}$ and with the

1347 application of the appropriate cap on Ψ_{v1} .

The downward adjusted baseline emissions must be less than or equal to the minimum downward adjustment, as specified in the <u>Article 6.4 Standard:</u> <u>Setting the baseline in mechanism methodologies</u>. The minimum downward adjusted baseline emissions for the first calendar year of the crediting period shall be calculated using <u>Equation (4)</u>. The final downward adjusted baseline emissions for the calendar year of the start date of the first crediting period is then calculated using <u>Equation (5)</u>.

For projects using the global default for baseline energy consumption, no additional downward adjustment for baseline uncertainty is required in the calendar year of the first crediting period. For these projects, the baseline emissions ($BE_{,y1}$) in the calendar year of the first crediting period are equal to the final downward adjusted baseline emissions during this year ($BE_{final,y1}$).

Downward adjustment in subsequent years: For each calendar year after the first crediting year, a downward adjustment to the baseline emissions shall be calculated by applying an annual reduction of 1% relative to the final adjusted baseline of year 1, using Equation (6).

The 1% annual rate is intended to ensure that baselines remain ambitious over time, while acknowledging the economic realities of clean cooking projects, which often face significant affordability barriers. This downward adjustment for subsequent years applies to all projects, except those using the global default for baseline energy consumption, for which an exemption has been requested.

Customer support actions: To be eligible to claim up to 90% of maximum PTDs, project proponents not estimating PTDs with SUMs must take the following customer support actions and provide details of how each condition has or will be met on the <u>Project Information Cover Sheet</u> during the design phase of the project.

- Demonstrate that the project has selected technologies and fuels that meet the cooking needs of the target population, either by citing robust research or conducting an investigation of cooking practices and attitudes during the project design phase.
- Provide evidence of project participant support activities. These may include such things as providing materials (print, in-person, or video) on how to operate the cookstove to prepare common local foods, how to troubleshoot common operational issues, and how to make minor repairs (including how to access any necessary parts). All project participant communications and materials shall be provided in local language(s) commonly used in the project area.
- Project participants must be able to contact the project proponent to access support (e.g., maintenance and repair services) through a commonly used, toll-free communications channel.

Project proponents who do not undertake all three of these customer support actions may claim up to 75% of maximum PTDs. These caps are waived where PTDs are estimated with SUMs.

11.2.2. Project emissions for non-CTEC projects

For non-CTEC projects, project emissions before any Hawthorne effect adjustment are calculated using Equation (20).

$$PE_{unadj,y} = \sum_{j} \left(EC_{proj,j,y} \times \left(fNRB_i \times EF_{proj,j,CO2} + EF_{proj,j,nonCO2} \right) \right) + \sum_{j} UE_{proj,j,y} + PE_{elec,y}$$
 (20)

Where:

Parameter	Description	Unit
$PE_{unadj,y}$	Project emissions during year <i>y</i> , before applying any Hawthorne effect adjustment	tCO₂e
$EC_{proj,j,y}$	Consumption of fuel <i>j</i> in project scenario in year <i>y</i> . Where fuels such as pellets and briquettes are made from a mix of renewable and non-renewable sources (e.g., renewable agricultural waste and non-renewable wood), each source should be considered its own fuel (See example in footnote 17).	TJ
$fNRB_{j}$	Fraction of non-renewable woody biomass fuel <i>j</i> consumed. This parameter varies between zero and 100% for fuelwood, charcoal, and other solid biomass fuels that are not fully renewable. When renewable biomass fuels are used (defined above), this parameter is equal to zero. When fossil fuels are used, it is equal to 100%.	%
$EF_{proj,j,CO2}$	CO_2 emission factor for project fuel j	tCO2e/TJ
$EF_{proj,j,nonCO2}$	Non-CO $_2$ emission factor for project fuel j	tCO₂e/TJ
$UE_{proj,j,y}$	Upstream emissions for project fuel <i>j</i> in year <i>y</i> , determined following <u>Section 11.3: Upstream</u> <u>Emissions</u>	tCO ₂ e
$PE_{elec,y}$	Emissions from electric energy consumption in year <i>y</i> (See <u>Equation (22)</u>)	tCO₂e

Non-CTEC projects may choose from two approaches to determine energy consumption in the project scenario, differentiated by application (or non-application) of SUMs. Adjustments to account for the Hawthorne Effect for each approach are included below.

Both approaches involve determining non-CTEC project fuel consumption through a representative sample with direct measurements of fuel using KPT following Equation (21):

1413

$$EC_{proj,j,y} = H_s \times ntEC_{proj,j,y} \times \frac{PTD_{h,\Psi,y}}{CD}$$
 (21)

1414 Where:

1415

Parameter	Description	Unit
$EC_{proj,j,y}$	Consumption of fuel <i>j</i> in project scenario	TJ
	in year <i>y</i>	
$H_{\scriptscriptstyle S}$	Average household size (persons per	Number
	household, regardless of age or gender)	
$ntEC_{proj,j,y}$	Energy consumption of project fuel <i>j</i> for	TJ/(person*year)
1 332	non-CTEC projects as measured by the	
	project KPT during year <i>y</i>	
$PTD_{h,\Psi,y}$	PTDs of the monitoring period during year	Number
	y (See <u>Equation (19</u>); as in the baseline	
	scenario, PTDs are capped at either 90% or	
	75% depending on customer support	
	actions taken. These caps are waived	
	when PTDs are estimated using SUMs.)	
CD	Days in a calendar year y. Use 366 for leap	Number
	years.	

1416 1417

For **energy sources other than electricity**, use <u>Equation (1)</u> to convert fuel masses to fuel energy.

141814191420

1421

1422

1423

1424

In the case of **non-CTEC electricity use in the project scenario**, project emissions must be calculated taking into account the average electricity consumption measured by the project KPT including the use of a plug-in power meter and its corresponding emission factor. Emissions from electric energy consumption from grid and/or off-grid sources are calculated using Equation (22).

14251426

$$PE_{elec,y} = 10^{-6} \times \left[\frac{EC_{proj,grid,y} \times EF_{proj,grid,y}}{1 - TDL_y} + \left(EC_{proj,offgrid,y} \times \sum_{k} f_{k,y} \times EF_{proj,offgrid,k} \right) \right]$$
(22)

1427 Where:

Parameter	Description	Unit
$PE_{elec,y}$	Emissions from electric energy consumption	tCO ₂ e
	in year <i>y</i>	

$EC_{proj,grid,y}$	Grid electricity consumption for cooking for	kWh
	non-CTEC project in year y (See <u>Equation (23)</u>).	
$EF_{proj,grid,y}$	Country-specific marginal grid emission	gCO₂e/kWh
	factor. See <u>Appendix 2: Grid Emission Factors</u>	
	in year <i>y</i>	
$EC_{proj,offgrid,y}$	Off-grid electricity consumption for cooking in	kWh
F 197199 1110	year y (See Equation (24)).	
$f_{k,y}$	Fraction of off-grid electricity provided by	%
	source <i>k</i> in year <i>y</i>	
$EF_{proj,offgrid,k}$	Off-grid emission factor for source k . This is a	gCO₂e/kWh
	technology-specific value provided in	
	Appendix 3: Off-Grid Emission Factors for	
	Select Technologies	
TDL_{v}	Average technical T&D losses for providing	%
	electricity in year <i>y</i>	
10^{-6}	Unit conversion for grams CO₂e to tonnes	
	CO₂e	

Electricity consumption shall be determined using plug-in power meters during the KPT and calculated using Equation (23) for grid electricity, and/or Equation (24) for off-grid electricity:

$$EC_{proj,grid,y} = H_s \times \frac{PTD_{h,\Psi,y}}{CD} \times EC_{proj,grid,KPTy}$$
 (23)

$$EC_{proj,offgrid,y} = H_s \times \frac{PTD_{h,\psi,y}}{CD} \times EC_{proj,offgrid,KPTy}$$
(24)

1434 Where:

Parameter	Description	Unit
$EC_{proj,grid,y}$	Grid electricity consumption for cooking for non-CTEC project in year y	kWh
$EC_{proj,offgrid,y}$	Grid electricity consumption for cooking for non-CTEC project in year y	kWh
H_{s}	Average household size (persons per household, regardless of age or gender)	Number
$PTD_{h,\Psi,y}$	PTDs of the monitoring period during year <i>y</i>	Number

$EC_{proj,grid,KPT,y}$	Grid electricity consumption in	kWh/(person*year)
	project KPT in year <i>y</i>	
$EC_{proj,offgrid,KPT,y}$	Off-grid electricity consumption in	kWh/(person*year)
	project KPT in year <i>y</i>	

Adjustment for the potential impact of the Hawthorne effect for non-CTEC projects

To account for the potential impacts of the Hawthorne Effect on project KPTs for non-CTEC projects, the methodology applies a Hawthorne Effect adjustment factor (HE_{ind}). This factor adjusts the calculated emissions reductions. For methodological consistency, the adjustment is incorporated directly in the project emissions calculation.

The final project emissions (PE_y) are calculated using Equation (25).

$$PE_{y} = PE_{unadj,y} + \left(BE_{final,y} - PE_{unadj,y}\right) \times (1 - HE_{ind})$$
(25)

Where:

Parameter	Description	Unit
PE_{y}	Final project emissions during year <i>y</i>	tCO ₂ e
$PE_{unadj,y}$	Project emissions during year <i>y</i> , before applying any Hawthorne effect adjustment	tCO₂e
$\textit{BE}_{final, oldsymbol{y}}$	Baseline emissions during year <i>y</i> (downward-adjusted when required)	tCO₂e
HE_{ind}	Hawthorne Effect adjustment factor, either: 75% when KPTs and usage surveys are used without SUMs, or Result of Equation (26) where KPTs and usage surveys are complemented by SUMs measurements	%

When projects complement KPTs and surveys with SUMs measurements, the ratio of project technology usage (cooking events/day) measured during the KPT to that measured during the month prior to or following the KPT is used to adjust the emission reduction estimate, such that in Equation (25), HE_{ind} equals the result of this ratio (see Equation (26)). This option requires that SUMs be applied to all project cookstoves in households where the KPT is performed. See Section 13 for SUMs monitoring requirements and Appendix 9 for general SUMs guidance.

1460 When projects measure fuel consumption through KPTs and usage surveys only, maximum emission reductions are capped at 75% of the KPT-based estimate to account for the Hawthorne Effect, such that in Equation (25), HE_{ind} equals 75%. $HE_{ind} = \min(1, \frac{PTC_m}{PTC_{KPT}})$ (26)

1467 Where:

Parameter Description Unit Adjustment to calculated emission reductions HE_{ind} % for the Hawthorne Effect PTC_m Average project technology cooking events Number per day over 1 month from SUMs measurements PTC_{KPT} Average project technology cooking events Number per day over the project KPT from SUMs measurements

1469

1470

1468

11.2.3. Emission reductions for non-CTEC projects

14711472

Emission reductions for both CTEC and non-CTEC projects are calculated using <u>Equation (16)</u>.

14731474

1475

11.3. Upstream emissions

1476 Upstream emissions for fuels in year y in both the baseline ($UE_{base,i,y}$) and 1477 project scenarios ($UE_{proj,j,y}$) for all fuels except electricity are calculated as 1478 follows:

(27)

$$UE_{base,i,y} = EC_{base,i,y} \times EF_{i,upstream}$$

$$UE_{proj,j,y} = EC_{proj,j,y} \times EF_{j,upstream}$$
 (28)

14791480

For CTEC projects using the back-calculation approach, $EC_{base,i,y}$ shall be taken as equal to $EC_{d-base,i,y}$, and $EC_{proj,j,y}$ shall be taken as equal to $tEC_{proj,j,y}$.

148114821483

1484

1485

For CTEC projects using the KPT approach, $EC_{base,i,y}$ and $EC_{proj,j,y}$ are calculated by scaling the amount of energy consumption for each fuel during the KPT per TJ of project fuel during the KPT by the total tracked project fuel consumption per year:

14861487

$$EC_{base,i,y} = \frac{EC_{base,KPT,i}}{tEC_{proj,KPT,i-project}} \times tEC_{proj,j,y}$$
(29)

$$EC_{proj,j,y} = \frac{tEC_{proj,KPT,j}}{tEC_{proj,KPT,i-project}} \times tEC_{proj,j,y}$$
(30)

1488

1490 Where:

Parameter	Description	Unit
$UE_{base,i,y}$	Upstream emissions for baseline fuel <i>i</i>	tCO₂e
	in year <i>y</i>	
$UE_{proj,j,y}$	Upstream emissions for project fuel j	tCO₂e
	in year <i>y</i>	
$EC_{i,y}$	Energy consumption for a fuel <i>i</i> in the	TJ
	baseline scenario in year <i>y</i>	
$EC_{j,y}$	Energy consumption for a <i>j</i> in the	TJ
	project scenario in year <i>y</i>	
$EF_{i,upstream}$	Upstream emission factor for fuel <i>i</i>	tCO₂/TJ
$EF_{j,upstream}$	Upstream emission factor for fuel <i>j</i>	tCO ₂ /TJ
$EC_{base,KPT,i}$	Energy consumption of baseline fuel <i>i</i>	TJ/(person*year)
	for CTEC projects based on baseline	
	KPT. Where fuels such as pellets and	
	briquettes are made from a mix of	
	renewable and non-renewable	
	sources (e.g., renewable agricultural	
	waste and non-renewable wood),	
	each source should be considered its	
	own fuel (See example in <u>footnote 17</u>).	//
$tEC_{proj,KPT,j}$	Energy consumption of each fuel j	TJ/(person*year)
	used in project households from	
	project KPT for CTEC projects. Where	
	fuels such as pellets and briquettes	
	are made from a mix of renewable	
	and non-renewable sources (e.g.,	
	renewable agricultural waste and non-renewable wood), each source	
	should be considered its own fuel.	
+FC		TJ/(person*year)
$tEC_{proj,KPT,j-project}$	project fuel <i>j</i> for project cookstove	
	only based on project KPT	
$tEC_{proj,j,y}$	Total tracked energy consumption of	ТЈ
proj,j,y	project fuel <i>j</i> for CTEC projects in year	10
	y	
	J	

Upstream emissions from electricity generation are included in the grid/off-grid emission factors which are presented in <u>Appendix 2</u> and <u>Appendix 3</u>. The emission factor accounting for the technical T&D losses for providing electricity is not included in the grid emission factors. Technical T&D losses are accounted for separately.

12. Monitoring Requirements

12.1. Monitoring activity schedule for CTEC projects

149915001501

1502

1503

1498

The table below present the monitoring activity schedule for CTEC projects.

Monitoring activity schedule for CTEC projects **Every Prior to first** monitoring Prior to Activity validation verification period Annual **Emission reduction estimation** Χ **Baseline studies** Baseline scenario survey Χ Baseline energy consumption measurement for CTEC projects using KPT approach Χ Specific energy consumption of baseline cookstove and fuel combination (from CCTs) for CTEC projects back-calculating the baseline Χ **Project studies** Usage survey Χ Project energy consumption measurement (from KPTs or tracked energy consumption) *Continuous if tracked, and reported every monitoring period Χ Χ* Specific energy consumption of project cookstove and fuel combination (from CCTs) before validation and every two years thereafter for CTEC projects that use CCTs to back-calculate the baseline. Χ Χ

Ongoing monitoring tasks	
Maintenance of total sales and service records, and project databases	Continuous

1505

12.2. Monitoring activity schedule for non-CTEC projects

1506 1507

1508

1509

The table below present the monitoring activity schedule for non-CTEC projects.

Monitoring activity schedule for non-CTEC projects Every **Prior to first** Prior to monitoring verification validation Activity Annual period **Emission reduction estimation** Χ **Baseline studies** Baseline scenario survey Χ Baseline energy consumption measurement (from KPTs) (required for all projects not using global default value) Χ **Project studies** Usage surveys Χ Project energy consumption measurement (from KPTs). KPTs must be performed no less frequently than every two years even if the monitoring period is longer. Χ Χ Ongoing monitoring tasks Maintenance of total sales and service records, and project databases Continuous

12.3. Other monitoring requirements

KPTs must be undertaken every two years, within the last four months of the monitoring period for which credits are being validated and issued, rather than at the beginning of a monitoring period. For a five-year crediting period, project proponents are expected to conduct KPTs at the end of Year 2 and Year 4. They may either conduct an additional KPT in Year 5 or if the project is renewed, apply the results from KPTs conducted in Year 6.

Evolving baselines

For projects with KPT baselines, project proponents must identify any mismatch between values documented during the baseline scenario and those reported by actual project households during the first project usage survey for primary fuel type and household size. This assessment shall be carried out using retrospective questions of project households during the first usage survey in any given household. Where a material discrepancy between the baseline scenario and the baseline observed in project households occurs, project proponents must either not claim emission reductions for households that do not conform to the baseline scenario profile or follow requirements on adjusting the baseline (toward lower baseline emissions).

Seasonality

Projects are required to account for the impact of seasonal variation on fueluse measurements in the baseline and project scenarios. Prior to project validation, projects must collect data during the baseline scenario survey on the relative fuel use at different times of the year (see Section 8: Baseline Section 8: Baseline

CTEC monitoring data

For any given project participant or technology, if more than half of the possible CTEC data for a monitoring period is missing, only available CTEC data may be included in emission reduction calculations. If missing CTEC data for a given project participant or technology consists of less than half of the possible data, then the project proponent may use the 25th percentile of the available tracked project energy consumption for that project participant or technology as a conservative replacement of the missing data.

Stove use monitoring

- The algorithm for estimating technology use events must be able to reliably distinguish cookstove use events from other potential factors that could be interpreted as cookstove use events that are caused by external reasons (e.g., temperature fluctuations from typical diurnal patterns). The algorithms shall be clearly presented publicly with associated equations and/or logic rules.
- The same algorithm and SUM device type shall be used for the duration of the project.
- Sampling must meet the 95/10 precision guidelines, per the sampling guidance included in <u>Appendix 10</u>.
- SUMs sampling protocols (installation, placement, downloading) and algorithms used to convert raw data into cooking events must not change between sampling during KPTs and sampling following KPTs. Project participants in the SUMs sample shall not receive any support different or additional to those not in the sample. See Appendix 10.
- For non-CTEC projects using the KPT and SUMs approach (see <u>Section 11.2.3</u>: <u>Emission Reductions for Non-CTEC projects</u>), the average of the cookstove use events per day during the full 1-month of stove use monitoring must be used to adjust for potential Hawthorn Effects. If SUMs data is incomplete or missing, it must be omitted from the analysis.

13. Methodology Parameters

1577 When the project proponents apply for crediting period renewal, all 1578 methodological parameters shall be reassessed as per the latest version of 1579 the methodology available at the time of renewal.

1580 1581

1582

1583

1576

Parameters are presented in alphabetical order, in separate sections for exante and monitored parameters.

13.1. Ex-ante parameters

Data/Parameter	CD
Unit	Number
Description	Days in a calendar year <i>y</i> . Use 366 for leap years
Type of	X Ex-ante
parameter	Monitored
Source of data	
Value applied	365 (non-leap year) or 366 (leap year)
Frequency of	
monitoring	
Description of	
measurement	
methods	
QA/QC	
procedures	
Purpose of data	
Comments	

Data/Parameter	$EC_{base,KPT,i}$
Unit	TJ/(person*year)
Description	Energy consumption of baseline fuel <i>i</i> for CTEC projects based on baseline KPT
Type of	X Ex-ante
parameter	Monitored
Source of data	Ex-ante baseline scenario KPT
Value applied	-
Frequency of monitoring	Once per crediting period
Description of measurement methods	CTEC projects that use tracked energy consumption and KPTs to determine fuel consumption in the baseline scenario must collect data from a representative sample of households and following the most recent version of the KPT protocol available at this link: https://cleancooking.org/protocols/

Data/Parameter	$EF_{base,i,CO2}$
Unit	tCO ₂ e/TJ
Description	CO ₂ emission factor for baseline fuel <i>i</i>
Type of	X Ex-ante
parameter	Monitored
Source of data	Default values from the latest version of the IPCC Guidelines for National GHG Inventories are provided for most fuels; other fuels shall use data from peer reviewed sources (see the notes and references listed in Appendix 5). If a fuel is not included in Appendix 5, then use literature-based values or project level tests using ISO 19867.
Value applied	See <u>Appendix 5: Default Point of Use Emission</u> <u>Factors, Thermal Efficiencies, and NCVs</u>
Frequency of monitoring	N/A
Description of measurement methods	N/A
QA/QC procedures	N/A
Purpose of data	Calculation of baseline emissions

Comments

Data/Parameter	$EF_{base,i,nonCO2}$
Unit	tCO ₂ e/TJ
Description	Non-CO ₂ emission factor for baseline fuel <i>i</i>
Type of	X Ex-ante
parameter	Monitored
Source of data	Default values from the latest version of the IPCC Guidelines for National GHG Inventories are provided for most fuels; other fuels shall use data from peer reviewed sources (see the notes and references listed in <u>Appendix 5</u>). If a fuel is not included in <u>Appendix 5</u> , then use literature-based values or project level tests using ISO 19867.
Value applied	See Appendix 5: Default Point of Use Emission Factors, Thermal Efficiencies, and NCVs
Frequency of monitoring	N/A
Description of measurement methods	N/A
QA/QC procedures	N/A
Purpose of data	Calculation of baseline emissions
Comments	

Data/Parameter	EF _{proj,j,CO2}
Unit	tCO₂e/TJ
Description	CO_2 emission factor for project fuel j
Type of	X Ex-ante
parameter	Monitored
Source of data	Default values from the latest version of the IPCC Guidelines for National GHG Inventories are provided for most fuels; other fuels shall use data from peer reviewed sources (see the notes and references listed in Appendix 5). If a fuel is not included in Appendix 5, then use literature-based values or project level tests using ISO 19867.
Value applied	See <u>Appendix 5: Default Point of Use Emission</u> <u>Factors, Thermal Efficiencies, and NCVs</u>
Frequency of monitoring	N/A

Description of	N/A
measurement	
methods	
QA/QC	
procedures	
Purpose of data	Calculation of project emissions
Comments	

Data/Parameter	$EF_{proj,j,nonCO2}$
Unit	tCO₂e/TJ
Description	Non-CO ₂ emission factor for project fuel <i>j</i>
Type of	X Ex-ante
parameter	Monitored
Source of data	Default values from the latest version of the IPCC Guidelines for National GHG Inventories are provided for most fuels; other fuels shall use data from peer reviewed sources (see the notes and references listed in Appendix 5). If a fuel is not included in Appendix 5, then use literature-based values or project level tests using ISO 19867.
Value applied	See Appendix 5: Default Point of Use Emission Factors, Thermal Efficiencies, and NCVs
Frequency of monitoring	N/A
Description of measurement methods QA/QC	N/A
procedures	
Purpose of data	Calculation of project emissions
Comments	

Data/Parameter	$EF_{i,upstream}$ and $EF_{i,upstream}$
Unit	tCO ₂ e/TJ
Description	Upstream emission factor for fuel i in baseline or fuel j in project scenario
Type of	X Ex-ante
parameter	Monitored
Source of data	See <u>Appendix 4</u>
Value applied	See <u>Appendix 4</u>
Frequency of	N/A
monitoring	

Description of	N/A
measurement	
methods	
QA/QC	
procedures	
Purpose of data	Calculation of upstream emissions in baseline and
	project scenarios
Comments	Upstream emissions for fuelwood are considered as
	zero

Data/Parameter	$EF_{proj,grid}$
Unit	gCO₂e/kWh
Description	Country-specific marginal grid emission factor
Type of	X Ex-ante
parameter	Monitored
Source of data	Marginal emission factors from the International Financial Institutions Technical Working Group on GHG Accounting, (provided in <u>Appendix 2: Grid Emission Factors</u>), or marginal emission factors provided by the relevant national authority.
Value applied	See Appendix 2
Frequency of monitoring	N/A
Description of measurement methods	N/A
QA/QC procedures	N/A
Purpose of data	Calculation of project emissions
Comments	

Data/Parameter	$EF_{proj,offgrid,k}$
Unit	gCO₂e/kWh
Description	Off-grid emission factor for source <i>k</i>
Type of	X Ex-ante
parameter	Monitored
Source of data	Mini-grid Emission Tool from SEforAll
Value applied	See Appendix 3
Frequency of	N/A
monitoring	
Description of	N/A
measurement	
methods	

QA/QC	N/A
procedures	
Purpose of data	Calculation of baseline and project emissions
Comments	

Data/Parameter	$fNRB_i$
Unit	Fraction
Description	Fraction of non-renewable woody biomass fuel <i>i</i>
Description	during year y
Type of	X Ex-ante
parameter	Monitored
	 National or sub-national default [a] values from CDM TOOL33 [b]; or Customized project area (not aligned with national or subnational boundaries) using the
	online MoFuSS Default Scenarios (MoFuSS-DS) interface [c]; or
Source of data	- Where applicable, project proponents may run their own model with webMoFuSS [d] using their own rigorously validated inputs, as stipulated in the model. For demand-side parameters like per capita fuel consumption, input data from population-representative surveys meeting the 95/10 rule or national datasets are acceptable. For supply-side data like land cover, biomass stock, or biomass growth maps, validated maps from reputed international sources or national remote sensing agencies are acceptable. More guidance to be published on webMoFuSS.
	[a] Sub-national values are appropriate for projects concentrated in specific regions. National values are appropriate for projects that are evenly spread throughout a country.
	[b] Default fNRB values from CDM TOOL33 (version 3.0) are included in Appendix 11.
	[c] https://mofuss.unam.mx/mofuss-ds/
	[d] If UNFCCC determines that a marginal approach to calculating fNRB is allowable, MoFuSS may be used to calculate marginal fNRB for a given project under this methodology.
Value applied	

Frequency of monitoring	Determined once ex-ante
Description of	
measurement	
methods	
QA/QC	
procedures	
Purpose of data	Calculation of baseline and project emissions
	This parameter is only considered when woody
	biomass is used in either baseline or project scenario.
Comments	This parameter varies between zero and 100% for
	fuelwood, charcoal, and other solid biomass fuels
	that are not fully renewable. When renewable
	biomass fuels are used, this parameter is equal to
	zero. When fossil fuels are used, it is equal to 100%.
	Updated at crediting period renewal.

Data/Parameter	H_{s}
Unit	Persons per household, regardless of age or gender
	(number)
Description	Average household size
Type of	X Ex-ante and
parameter	X Monitored
Source of data	Survey
Value applied	-
Frequency of	N/A
monitoring	
Description of	Baseline survey and annual usage surveys, adjusting
measurement	to the lower value when a decrease in persons per
methods	household is observed.
QA/QC procedures	The parameter estimate from the survey must meet the minimum confidence and precision of 95/10 to use the mean value. If the target precision is not met, the project proponent shall apply the conservative bounds of the confidence intervals as the parameter value. The conservative bounds are those that produce a lower CO ₂ e emissions reduction estimate.
Purpose of data	Calculation of baseline and project emissions
Comments	-

Data/Parameter	LE_y
Unit	Percentage
Description	Percentage deduction to account for leakage emissions during year <i>y</i>
Type of	X Ex-ante
parameter	Monitored
Source of data	
Value applied	2%
Frequency of	
monitoring	
	All projects shall either apply a default adjustment factor of 2% to the emission reductions to approximate leakage emissions, or evaluate the
	relevant potential sources of leakage and provide an evidence-based description and estimated
	quantification of each potential source and its relevance for the project.
	If utilizing the latter, for each source for which the
Description of measurement methods	leakage assessment expects an increase in fuel consumption by non-project households attributable to the project activity, then calculations must be undertaken to account for the leakage from this source. Leakage is either calculated as a quantitative
	emissions volume (tCO ₂ e) or as a percentage of total emission reductions. The project documentation shall include a projection of leakage emissions based on available data and information. The monitoring plan must include monitoring parameters to be registered during the leakage investigation every two years to populate the leakage calculation.
	When using the latter, the project proponent must conduct a leakage investigation every two years using relevant methods. For example, surveys to determine parameters for the leakage calculation may be combined with project monitoring surveys, as is applicable. Monitoring plans should include field-based measurement methods, especially for the quantification of fuel, as data on fuel use estimated
	via surveys are often insufficiently accurate.
QA/QC procedures	

Purpose of data	
Comments	

Data/Parameter	NCV_x (also NCV_j) _j
Unit	TJ/tonnes
Description	Net calorific value of fuel x (or j)
Type of	X Ex-ante
parameter	Monitored
Source of data	Default values from the latest version of the IPCC Guidelines for National GHG Inventories are provided for most fuels in <u>Appendix 5</u>). Use of these values for wood and charcoal are required. For other fuels, project level tests using ISO 19867 may be used. Significant variance between such outputs and the values above must be noted and justified in the <u>Project Information Cover Sheet</u> . If a fuel is not included in <u>Appendix 5</u> , then use literature-based values or project level tests using ISO 19867.
Value applied	See Appendix 5: Default Point of Use Emission Factors, Thermal Efficiencies, and NCVs
Frequency of monitoring	N/A
Description of measurement methods	N/A
QA/QC procedures	N/A
Purpose of data	Calculation of baseline and project emissions
Comments	Not applicable for electricity as energy source in baseline or project scenario

Data/Parameter	n t $EC_{\mathrm{base},i,y}$
Unit	TJ/(person*year)
Description	Energy consumption of baseline fuel <i>i</i> for non-CTEC projects in year <i>y</i>
Type of	X Ex-ante
parameter	Monitored
Source of data	Global default value from <u>Section 9: Baseline Energy</u> <u>Consumption Defaults and Caps</u> or results from baseline KPT
Value applied	-
Frequency of monitoring	Beginning of the crediting period

Description of measurement methods	Projects that choose the KPT approach to determine fuel consumption in the baseline scenario must collect data from a representative sample of households and follow the most recent version of the KPT protocol available at this link: https://cleancooking.org/protocols/
QA/QC procedures	The study must meet the minimum confidence and precision of 95/10 for annual fuel energy consumption per person to use the mean values. The 95/10 rule is applied to the sum of energy consumption across fuels. If the target precision is not met, the project proponent shall take the conservative bound of the confidence interval as the parameter value, proportionately applied across all of the fuels used. The conservative bound is that which produces a lower CO ₂ e emissions reduction estimate.
Purpose of data	Calculation of baseline emissions for non-CTEC projects
Comments	-

Data/Parameter	$SC_{b.i}$
Unit	MJ / kg food
Description	Specific energy consumption of a baseline cookstove using fuel <i>i</i> to cook a given amount of food
Type of	X Ex-ante
parameter	Monitored
Source of data	Most recent version of the CCT protocol available at this link: https://cleancooking.org/protocols/
Value applied	The parameter estimate from the test results must meet the minimum confidence and precision of 95/10 to use the mean value. If the target precision is not met, the project proponent shall apply the conservative bounds of the confidence intervals as the parameter value. The conservative bounds are those that produce a lower CO ₂ e emissions reduction estimate.
Frequency of monitoring	Before validation
Description of measurement methods	Provided in the CCT protocol
QA/QC procedures	Requirements per the CCT protocol. Additionally:

	 A minimum of 15 CCTs by 5 different cooks (3 repeats per cook) must be conducted per cookstove model. The CCTs must be alternated between the baseline and project cookstoves to limit potential bias in increased cook efficiency over repeats. For artisanal cookstoves, at least three randomly-selected samples of each cookstove model must be tested.
Purpose of data	Back-calculation of baseline fuel consumption for CTEC projects using the back-calculation approach for displaced baseline energy consumption
Comments	-

Data/Parameter	$SC_{p,j}$
Unit	MJ / kg food
Description	Specific energy consumption of a project cookstove using fuel <i>j</i> to cook a given amount of food
Type of parameter	X Ex-ante, and X Monitored
Source of data	Most recent version of the CCT protocol available at this link: https://cleancooking.org/protocols/
Value applied	The parameter estimate from the test results must meet the minimum confidence and precision of 95/10 to use the mean value. If the target precision is not met, the project proponent shall apply the conservative bounds of the confidence interval as the parameter value. The conservative bounds are those that produce a lower CO ₂ e emissions reduction estimate.
Frequency of monitoring	Before validation, and every 2 years thereafter
Description of measurement methods	Provided in the CCT protocol
QA/QC procedures	 Requirements per the CCT protocol. Additionally: A minimum of 15 CCTs by 5 different cooks (3 repeats per cook) must be conducted per cookstove type.

	The CCTs must be alternated between the baseline and project cookstoves to limit potential bias in increased cook efficiency over repeats.
	For artisanal cookstoves, at least three randomly- selected samples of each cookstove model must be tested.
Purpose of data	Back-calculation of baseline fuel consumption for CTEC projects using the back-calculation approach for displaced baseline energy consumption.
Comments	-

Data/Parameter	TDL_{v}
Unit	Percentage
Description	Average technical T&D losses for providing electricity in year <i>y</i>
Type of parameter	X Ex-ante Monitored
Source of data	 T&D loss values should come from the following sources: If available, the percentage published by the national grid's operator should be used. If the value from the national grid's operator is not available, then national T&D loss percentages from international, reputable sources such as the World Bank or the International Energy Agency should be used. If none of the options above are available, a 20% conservative default for T&D losses should be applied.
Value applied Frequency of monitoring	Determined once ex-ante
Description of measurement methods	N/A
QA/QC procedures	N/A
Purpose of data	Calculation project emissions
Comments	-

13.2. Monitored parameters

Data/Parameter	$Days_{y,h}$
Unit	Number
Description	Number of maximum possible project-technology days during the year <i>y</i> in household <i>h</i>
Type of	Ex-ante
parameter	X Monitored
Source of data	Project database
Value applied	-
Frequency of monitoring	Annually
Description of measurement methods	For each project household this is determined using the date the project-technology was obtained by the household, and the dates of the monitoring period.
QA/QC procedures	-
Purpose of data	Calculation of baseline and project emissions for non- CTEC projects
Comments	-

Data/Parameter	$\mathit{EC}_{proj,grid,\mathit{KPT},y}$ and $\mathit{EC}_{proj,offgrid,\mathit{KPT},y}$
Unit	kWh/(person*year)
Description	Electricity consumption in project KPT in year y
Type of	Ex-ante
parameter	X Monitored
Source of data	KPT during project scenario
Value applied	Result from KPT
Frequency of monitoring	Every two years during project
Description of measurement methods	A representative sample with built-in or external data loggers, where they conform with industry standards and are calibrated according to manufacturer recommendations and/or relevant national requirements as applicable, shall be used during KPTs.
QA/QC procedures	The study must meet the minimum confidence and precision of 95/10 for the target parameter of average annual energy consumption per person. The 95/10 rule is applied to the sum of energy consumption across fuels (see parameter $\sum tEC_{base,KPT,i}$ in Appendix 10, which subsumes this parameter). If the target precision is not met, the project proponent shall take

	the conservative bounds of the confidence intervals as the parameter value, proportionately applied across all of the fuels used. The conservative bounds are those that produce a lower CO ₂ e emissions reduction estimate.
Purpose of data	Calculation of project emissions for non-CTEC projects
Comments	-

Data/Parameter	FC_x (or $FC_{i,h,y}$ or $FC_{j,h,y}$)
Unit	Tonnes
	Fuel consumption for the respective fuel and
Description	scenario x (also Fuel consumption for fuel i or j in
	household <i>h</i> in year <i>y</i>)
Type of	Ex-ante
parameter	X Monitored
Source of data	Weighing scale
Value applied	-
Frequency of monitoring	At baseline and every two years for project KPTs
	KPT.
D : 1: (Scales must have the capacity to weigh the
Description of	respective solid fuels encountered during KPT. They
measurement methods	will have a minimum resolution of 10g or 2% of the expected difference between daily weighings for the
methods	primary fuel type.
	primary ruer type.
	Scales must remain stable at a zero reading after
	taring. Scales must be checked during every day of
	use to confirm that they are within 1% of a certified
0.1/0.0	calibration weight. The calibration weight must be
QA/QC	within +/- 50% of typical weights for the primary fuel
procedures	type. For example, if bundles of wood are typically
	10kg, then the calibration weight must be between 5 and 15 kg. If a scale indicates it is out of compliance,
	measurements from the that scale must be
	discarded until the previous, valid check.
Purpose of data	Calculation of project emissions for CTEC projects
Comments	-
551111151165	

Data/Parameter	$f_{k,y}$
Unit	%
Description	Fraction of off-grid electricity provided by source k in year y
Type of	Ex-ante
parameter	X Monitored
Source of data	Measurement of off-grid electricity sources used by the project activity using electric meters
Value applied	-
Frequency of monitoring	Annual
Description of measurement methods	Electric meters measuring off-grid sources.
QA/QC procedures	Measured generation shall be cross-checked with off-grid source installed capacity and load factor.
Purpose of data	Apportioning fraction of electricity use for off grid emission factors.
Comments	

Data/Parameter	$H_{\mathcal{S}}$
Unit	Persons per household, regardless of age or gender (number)
Description	Average household size
Type of	X Ex-ante and
parameter	X Monitored
Source of data	Survey
Value applied	-
Frequency of monitoring	N/A
Description of measurement methods	Baseline survey and annual usage surveys, adjusting to the lower value when a decrease in persons per household is observed.
QA/QC procedures	The parameter estimate from the survey must meet the minimum confidence and precision of 95/10 to use the mean value. If the target precision is not met, the project proponent shall apply the conservative bounds of the confidence intervals as the parameter value. The conservative bounds are those that produce a lower CO ₂ e emissions reduction estimate.
Purpose of data	Calculation of baseline and project emissions
Comments	-

Data/Parameter	$ntEC_{proj,j,y}$
Unit	TJ/(person*year)
Description	Energy consumption of project fuel <i>j</i> for non-CTEC projects as measured by the project KPT in year <i>y</i>
Type of	Ex-ante
parameter	X Monitored
Source of data	KPT during project scenario
Value applied	Result from KPT
Frequency of monitoring	Every two years
Description of measurement methods	Representative sample using a KPT
QA/QC procedures	The study must meet the minimum confidence and precision of 95/10 for the target parameter of average annual energy consumption per person. The 95/10 rule is applied to the sum of energy consumption across fuels (see parameter $\sum tEC_{base,KPT,i}$ in Appendix 10, which subsumes this parameter). If the target precision is not met, the project proponent shall take the conservative bounds of the confidence intervals as the parameter value, proportionately applied across all of the fuels used. The conservative bounds are those that produce a lower CO_2e emissions reduction estimate.
Purpose of data	Calculate project emissions for non-CTEC projects
Comments	

Data/Parameter	$PC_{b,i}$
Unit	Percentage
Description	Proportion of cooking events conducted using baseline fuel <i>i</i>
Type of	Ex-ante
parameter	X Monitored
Source of data	Surveys
Value applied	
Frequency of monitoring	Once per crediting period
Description of measurement methods	Baseline scenario surveys or stove use monitoring.

	The survey must ask to identify all the cooking devices present in the household. For all cooking devices present in the household, ask "How many times did you cook using [cooking device] yesterday?" to determine the number of usage events per day per device.
QA/QC procedures	The parameter estimate from the survey must meet the minimum confidence and precision of 95/10 for the percentage of baseline cooking conducted using baseline fuel <i>i</i> , with a minimum of 200 households.
Purpose of data	Estimate the proportion of cooking events conducted using baseline fuel i , used in conjunction with parameter $PC_{p,j}$ to calculate a material difference between the baseline scenario and actual project households, for non-CTEC and CTEC with KPT projects. This parameter does not appear in emissions reduction quantification equations.
Comments	When multiple devices/fuels are used in the baseline by the end user in the same premises, the proportional use shall be established from surveys or stove use monitoring as described in Appendix 9.

Data/Parameter	$PC_{p,j}$
Unit	Percentage
Description	Proportion of cooking events conducted using project fuel <i>j</i>
Type of	Ex-ante
parameter	X Monitored
Source of data	Surveys
Value applied	
Frequency of monitoring	Once per crediting period
Description of measurement methods	Project usage surveys or stove use monitoring. The survey must ask to identify all the cooking devices present in the household. For the project cookstove and each other cooking device present in the household, ask "How many times did you cook using [cooking device] yesterday?" to determine the number of usage events per day per device.
QA/QC procedures	The parameter estimate from the survey must meet the minimum confidence and precision of 95/10 for the percentage of baseline cooking conducted using project fuel <i>j</i> .

Purpose of data	Estimate the proportion of cooking events conducted using project fuel j , used in conjunction with parameter $PC_{b,i}$ to calculate a material difference between the baseline scenario and actual project households, for non-CTEC and CTEC with KPT projects. This parameter does not appear in emissions reduction quantification equations.
Comments	When multiple devices/fuels are used in the baseline by the end user in the same premises, the proportional use shall be established from surveys or stove use monitoring as described in Appendix 9.

Data/Parameter	PTC_m
Unit	Cooking events/day (Number)
Description	Average project technology cooking events per day over 1 month from SUMs measurements
Type of	Ex-ante
parameter	X Monitored
Source of data	SUMs monitoring
Value applied	Average
Frequency of monitoring	Once for a one-month duration during the first monitoring period of the crediting period
Description of measurement methods	Installation of SUMs on a representative sample of project technology cookstoves
QA/QC procedures	The study must meet the minimum confidence and precision of 95/10 for the target parameter of average cooking events per day per project technology cookstoves. If the target precision is not met, the project proponent shall take the conservative bounds of the confidence intervals as the parameter value. The conservative bounds are those that tend to underestimate project technology cooking events. SUMs sampling protocols (installation, placement, downloading) and algorithms used to convert raw data into cooking events must not change between sampling during KPTs and sampling during ongoing project operation.
Purpose of data	Calculation of project emissions through KPT and usage surveys complemented with SUMs
Comments	User households in the SUMs sample shall not receive any support different or additional to those not in the sample.

Data/Parameter	PTC_{KPT}
Unit	Cooking events/day (Number)
Description	Average project technology cooking events per day over the project KPT from SUMs measurements
Type of	Ex-ante
parameter	X Monitored
Source of data	SUMs monitoring
Value applied	Average
Frequency of monitoring	Once during the project KPT
Description of measurement methods	Installation of SUMs on the project technology cookstoves during the project KPT
QA/QC procedures	The study must meet the minimum confidence and precision of 95/10 for the target parameter of average cooking events per day per project technology cookstoves. If the target precision is not met, the project proponent shall take the conservative bounds of the confidence intervals as the parameter value. The conservative bounds are those that tend to underestimate project technology cooking events. SUMs sampling protocols (installation, placement, downloading) and algorithms used to convert raw data into cooking events must not change between sampling during KPTs and sampling during ongoing project operation.
Purpose of data	Calculation of project emissions through KPT and usage surveys complemented with SUMs
Comments	-

Data/Parameter	$SC_{p,j}$
Unit	MJ / kg food
Description	Specific energy consumption of a project cookstove using fuel <i>j</i> to cook a given amount of food
Type of	X Ex-ante, and
parameter	X Monitored
Source of data	Most recent version of the CCT protocol available at this link:
Value applied	The parameter estimate from the test results must meet the minimum confidence and precision of

	95/10 to use the mean value. If the target precision is not met, the project proponent shall apply the conservative bounds of the confidence intervals as the parameter value. The conservative bounds are those that produce a lower CO ₂ e emissions reduction estimate.
Frequency of monitoring	Before validation, and every 2 years thereafter
Description of measurement methods	Provided in the CCT protocol
QA/QC procedures	 Requirements per the CCT protocol. Additionally: A minimum of 15 CCTs by 5 different cooks (3 repeats per cook) must be conducted per cookstove type. The CCTs must be alternated between the baseline and project cookstoves to limit potential bias in increased cook efficiency over repeats. For artisanal cookstoves, at least three randomly-selected samples of each cookstove model must be tested
Purpose of data	Back-calculation of baseline fuel consumption for CTEC projects using the back-calculation approach for displaced baseline energy consumption
Comments	-

Data/Parameter	$tEC_{proj,grid,h,y}$
Unit	kWh
Description	Tracked grid electricity consumed for cooking in household h in year y
Type of	Ex-ante
parameter	X Monitored
Source of data	Metered electricity use for each household
Value applied	-
Frequency of monitoring	Continuous and aggregated annually
Description of measurement	Applies for households consuming energy from the grid.
methods	All project technologies are monitored continuously.

	Built-in or external data loggers may be used, where they conform with industry standards and are calibrated according to manufacturer recommendations and/or relevant national requirements as applicable.
QA/QC procedures	Measured project technology electricity use shall be cross checked with the wattage of the project-technology and the estimated operating hours for a sample of project-technology units.
Purpose of data	Calculation of project emissions for CTEC projects
Comments	-

,	
Data/Parameter	$tEC_{proj,KPT,j}$
Unit	TJ/(person*year)
Description	Energy consumption of each fuel j used in project
Description	households from project KPT for CTEC projects
Type of	Ex-ante
parameter	X Monitored
Source of data	Project scenario KPT
Value applied	-
Frequency of monitoring	Once per crediting period
Description of measurement methods	CTEC projects that use tracked energy consumption and KPTs must collect data on all cookstoves operating in parallel with the project cookstove, from a representative sample of households and following the most recent version of the KPT protocol available at this link: https://cleancooking.org/ protocols/
QA/QC procedures	The study must meet the minimum confidence and precision of 95/10 for the target parameter of average annual energy consumption per person. The 95/10 rule is applied to the sum of energy consumption across fuels (see parameter $\sum tEC_{base,KPT,i}$ in Appendix 10, which subsumes this parameter). If the target precision is not met, the project proponent shall take the conservative bounds of the confidence intervals as the parameter value, proportionately applied across all of the fuels used. The conservative bounds are those that produce a lower CO ₂ e emissions reduction estimate.

Data/Parameter	ter $tEC_{proj,KPT,j-project}$			
Unit	TJ/(person*year) or (in the case of electricity)			
Offic	kWh/(person*year)			
Description	Tracked energy consumption of project fuel <i>j</i> for project cookstove only based on project KPT			
Type of	Ex-ante			
parameter	X Monitored			
Source of data	Project scenario KPT			
Value applied	-			
Frequency of monitoring	Once per crediting period			
Description of measurement methods	CTEC projects that use tracked energy consumption and KPTs must collect data on all cookstoves operating in parallel with the project cookstove, from a representative sample of households and following the most recent version of the KPT protocol available at this link: https://cleancooking.org/ protocols/ ECproj,KPT,j-project is extracted from the same measurements as the ones used to obtain ECproj,KPT,j and comprises energy consumption of project fuel j for project cookstove only. It also may be expressed in kWh/(person*year) if the project-technology consumes electricity.			
QA/QC procedures	The study must meet the minimum confidence and precision of 95/10 for the target parameter of average annual energy consumption per person. The 95/10 rule is applied to the sum of energy consumption across fuels (see parameter $\sum tEC_{base,KPT,i}$ in Appendix 10, which subsumes this parameter). If the target precision is not met, the project proponent shall take the conservative bounds of the confidence intervals as the parameter value, proportionately applied across all of the fuels used. The conservative bounds are those that produce a lower CO_2e emissions reduction estimate.			

Purpose of data	Calculation of project emissions for CTEC projects that use tracked energy consumption and KPTs	
Comments	-	

Data/Parameter	$tEC_{proj,off,grid,h,y}$			
Unit	kWh			
Description	Tracked off-grid electricity consumed for cooking in household <i>h</i> in year <i>y</i>			
Type of	Ex-ante			
parameter	X Monitored			
Source of data	Metered electricity use for each household			
Value applied	-			
Frequency of monitoring	Continuous and aggregated annually			
Description of measurement methods	Applies for households consuming energy from offgrid sources. All project technologies are monitored continuously. Built-in or external data loggers may be used, where they conform with industry standards and are calibrated according to manufacturer recommendations and/or relevant national requirements as applicable.			
QA/QC procedures	Measured project technology electricity use shall be cross checked for consistency with the wattage of the project-technology and the estimated operating hours for a sample of project-technology units.			
Purpose of data	Calculation of project emissions for CTEC projects			
Comments	-			

Data/Parameter	$tPC_{b,i}$		
Unit	Percentage		
Description	Proportion of cooking events conducted using fuel-		
Description	stove combination <i>i</i> for CTEC projects		
Type of	Ex-ante		
parameter	X Monitored		
Source of data	Surveys		
Value applied			
Frequency of	Once per crediting period		
monitoring			

	Baseline scenario surveys or stove use monitoring.
Description of measurement methods	The survey must ask to identify all the cooking devices present in the household. For the project cookstove and each other cooking device present in the household, ask "How many times did you cook using [cooking device] yesterday?" to determine the number of usage events per day per device.
QA/QC procedures	The parameter estimate from the survey must meet the minimum confidence and precision of 95/10 for the percentage of baseline cooking conducted on each cookstove-fuel combination present in the baseline.
Purpose of data	Estimate the displacement of the baseline cookstove(s) in the CTEC back-calculating option
Comments	When multiple devices/fuels are used in the baseline by the end user in the same premises, the proportional use shall be established from surveys or stove use monitoring as described in Appendix 9.

Data/Parameter	$ \Psi_{ m v} $		
Unit	Percentage		
Description	Percent of project households with cookstoves present, where project cookstove is used at least once per week, determined via survey and visual observation, or estimated with SUMs in year y		
Type of	Ex-ante		
parameter	X Monitored		
Source of data	Usage survey and visual observation		
Value applied	-		
Frequency of monitoring	Annual		
Description of measurement methods	Household surveys of project households with cookstoves present for which participants are asked if they use the cookstove more than once per week on average. The cookstove must also be visually observed and indicate signs of consistent intended use: • Cookstove is unpacked • Present in an easily accessible area • Not being used for a non-cooking purpose • Appears in working condition • Does not have signs of disuse such as being covered in dust or filled with spider webs		

• Has ashes from recent use

Capped at 90% for projects that undertake customer support actions as described below and 75% for those that do not.

Customer support actions: To be eligible to claim up to 90% of maximum PTDs, project proponents not estimating PTDs with SUMs must take the following customer support actions and provide details of how each condition has or will be met on the Project Information Cover Sheet during the design phase of the project.

- Demonstrate that the project has selected technologies and fuels that meet the cooking needs of the target population, either by citing robust research or conducting an investigation of cooking practices and attitudes during the project design phase.
- Provide evidence of project participant support activities. These may include such things as providing materials (print, in-person, or video) on how to operate the cookstove to prepare common local foods, how to troubleshoot common operational issues, and how to make minor repairs (including how to access any necessary parts). All project participant communications and materials shall be provided in local language(s) commonly used in the project area.
- Project participants must be able to contact the project proponent to access support (e.g., maintenance and repair services) through a commonly used, toll-free communications channel.

Project proponents who do not undertake all three of these customer support actions may claim up to 75% of maximum PTDs. These caps are waived when PTDs are estimated using SUMs.

QA/QC procedures Sampling must be conducted to meet the 95/10 precision guideline on the target parameter of the percentage of project households with cookstoves

	present in which project cookstove is used at least once per week.
Purpose of data	Calculation of baseline and project emissions for non- CTEC projects
Comments	-

1621	14. Sources and References
1622 1623 1624 1625	The CLEAR methodology was developed in alignment with the <u>Principles</u> for Responsible Carbon Finance in Clean Cooking.
1626 1627 1628 1629 1630	 Where applicable, the CLEAR methodology requires use of the most recent versions of the following tools, standards, guidelines, and protocols: Article 6.4 Standard: Demonstration of additionality in mechanism methodologies: https://unfccc.int/sites/default/files/resource/A6.4-STAN-METH-003.pdf
1631 1632 1633	 Article 6.4 Standard: Setting the baseline in mechanism methodologies: https://unfccc.int/sites/default/files/resource/A6.4-STAN-METH-004.pdf
1634 1635 1636	 Article 6.4 Sustainable Development Tool: https://unfccc.int/process- and-meetings/bodies/constituted-bodies/article-64-supervisory- body/rules-and-regulations#Tools
1637	CCT Protocol, available at: https://cleancooking.org/protocols/
1638 1639 1640 1641	 CDM Methodological Tool: Default values for common parameters (TOOL33): https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-33-v3.pdf
1642 1643 1644	IPCC Guidelines for GHG National Inventories: https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/
1645 1646 1647	 ISO Standard 19867-1: https://cleancooking.org/protocols/
1648 1649	 Modelling Fuelwood Savings Scenarios (MoFuSS): https://www.mofuss.unam.mx/
1650 1651	 Mini-Grid Emissions Tool from SEforAll: https://www.seforall.org/mini-grids-emissions-tool
1652 1653 1654 1655	The CLEAR methodology also references the following sources which include general guidance for conducting high-quality baseline and project surveys in the LMIC context:
1656 1657	 Clean Cooking Alliance's <u>Fuel Stacking Toolkit</u> <u>Designing Household Survey Samples: Practical Guidelines</u>

- Gold Standard's MECD Survey Questionnaire
- Gold Standard's <u>TPDDTEC Survey Questionnaire</u>
- Guidance on survey design from the authors of Gill-Wiehl, A.,
 Kammen, D.M. & Haya, B.K. Pervasive over-crediting from cookstove offset methodologies. Nat Sustain 7, 191–202 (2024).
 https://doi.org/10.1038/s41893-023-01259-6
 - Household Sample Surveys in Developing and Transition Countries
 - Siwatu, Gbemisola Oseni; Palacios-Lopez, Amparo; Mugera, Harriet Kasidi; Durazo, Josefine. Capturing What Matters: Essential Guidelines for Designing Household Surveys (English). LSMS Guidebook Washington, D.C.: World Bank Group. http://documents.worldbank.org/curated/en/381751639456530686
 - WHO World Health Survey Manual.

1665

1666 1667

1668

1669

1670 1671

1675

1681

1687

1692

1672 Additional sources used in CLEAR <u>Appendix 4: Upstream Emissions from</u>
1673 <u>Other Fuels</u> and <u>Appendix 5: Default Point of Use Emission Factors, Thermal</u>
1674 Efficiencies, and NCVs:

- 1676 Akagi, S. K., R. J. Yokelson, C. Wiedinmyer, M. J. Alvarado, J. S. Reid, T. Karl, J.
- D. Crounse, and P. O. Wennberg. "Emission Factors for Open and
- 1678 Domestic Biomass Burning for Use in Atmospheric Models." Atmospheric
- 1679 Chemistry and Physics 11, no. 9 (May 3, 2011): 4039–72.
- 1680 <u>https://doi.org/10.5194/acp-11-4039-2011</u>

Bertschi, Isaac T., Robert J. Yokelson, Darold E. Ward, Ted J. Christian, and Wei Min Hao. "Trace Gas Emissions from the Production and Use of Domestic Biofuels in Zambia Measured by Open-Path Fourier Transform Infrared Spectroscopy." Journal of Geophysical Research-Atmosphere 108 (2003): 5–1, 5–13

Brocard, D., C. Lacaux, J. P. Lacaux, G. Kouadio, and V. Yoboue. "Emissions from the Combustion of Biofuels in Western Africa." In Biomass Burning and Global Change, edited by J. S. Levine, 1:350–60. Cambridge, MA: MIT Press, 1996.

1693 Christian, T. J., R. J. Yokelson, B. Cárdenas, L. T. Molina, G. Engling, and S.-C.
1694 Hsu. "Trace Gas and Particle Emissions from Domestic and Industrial
1695 Biofuel Use and Garbage Burning in Central Mexico." Atmospheric

1696	Chemistry and Physics 10, no. 2 (January 21, 2010): 565–84.
1697	https://doi.org/10.5194/acp-10-565-2010
1698	
1699	Fleming LT, Weltman R, Yadav A, et al. Emissions from village cookstoves in
1700	Haryana, India, and their potential impacts on air quality. Atmos Chem
1701	Phys. 2018;18:15169–15182.
1702	
1703	Floess, E., Grieshop, A., Puzzolo, E., Pope, D., Leach, N., Smith, C., Gill-Wiehl, A.,
1704	Landesman, K., and Bailis, R. "Scaling up gas and electric cooking in low-
1705	and middle-income countries: climate threat or mitigation strategy with
1706	co-benefits?" Environmental Research Letters 18, no. 3 (2023).
1707	https://doi.org/10.1088/1748-9326/acb501
1708	
1709	Gomez, Darío R., and John D. Watterson. 2006. 2006 IPCC Guidelines for
1710	National Greenhouse Gas Inventories. edited by S. Eggleston, L. Buendia,
1711	K. Miwa, T. Ngara, and K. Tanabe. Kamiyamaguchi Hayama, Japan:
1712	Institute for Global Environmental Strategies.
1713	
1714	Lacaux, J. P., J. M. Brustet, R. Delmas, J. C. Menaut, L. Abbadie, B. Bonsang, H.
1715	Cachier, J. Baudet, M. O. Andreae, and G. Helas. "Biomass Burning in the
1716	Tropical Savannas of Ivory Coast: An Overview of the Field Experiment Fire
1717	of Savannas (FOS/DECAFE 91)." Journal of Atmospheric Chemistry 22, no.
1718	1–2 (October 1995): 195–216. <u>https://doi.org/10.1007/BF00708189</u>
1719	
1720	Pennise, D., K. R. Smith, J. P. Kithinji, M. E. Rezende, T. J. Raad, J. Zhang, and
1721	C. Fan. "Emissions of Greenhouse Gases and Other Airborne Pollutants
1722	from Charcoal-Making in Kenya and Brazil." Journal of Geophysical
1723	Research-Atmosphere 106 (2001): 24143–55
1724	Conith IV D. D. D. Dannias D. Whymana and IV Chairman IV Ditaran 3
1725	Smith, K. R., D. P. Pennise, P. Khummongkol, V. Chaiwong, K. Ritgeen, J.
1726	Zhang, W. Panyathanya, R. A. Rasmussen, and M. A. K. Khalil. "Greenhouse
1727	Gases from Small-Scale Combustion in Developing Countries: Charcoal
1728	Making Kilns in Thailand." Research Triangle Park, NC: US EPA, 1999
1729	Stockwall CE Christian Ti Cootz ID at al Nanal Ambient Manitoring and
17301731	Stockwell CE, Christian TJ, Goetz JD, et al. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of trace gases and
1731	light-absorbing carbon from wood and dung cooking fires, garbage and
1134	mante apporpring carport nottl wood and dand COOMING III ED. Galdate and

1733	crop residue burning, brick kilns, and other sources. Atmospheric
1734	Chemistry and Physics. 2016;16:11043–11081.
1735	
1736	The Earth's Energy Budget, Climate Feedbacks and Climate Sensitivity,
1737	Table 7.15 in AR6 WG1 Chapter 7. https://doi.org/10.1017/9781009157896.009
1738	
1739	Other references:
1740	Other references.
1741	Bailis, R., Drigo, R., Ghilardi, A., and Masera, O. (2015). The carbon footprint of
1742	traditional woodfuels. Nature Climate Change, 5(3), 266-272.
1743	
1744	Berkeley Air Monitoring Group (2024). Research Brief: Biomass Energy
1745	Initiative for Africa: Hawthorne Effect Investigation. Available at:
1746	https://cleancooking.org/wp-content/uploads/2025/03/Berkeley-Air-
1747	Research-Frief_Hawthorne-Effect-Investigation.pdf
1748	Ghilardi, A., and Bailis, R. (2024). Updated fNRB Values for Woodfuel
1749	Interventions.
1750	https://cdm.unfccc.int/Sunset_CMS_ControlledSlots/public_inputs/sun
1751	setcms/storage/contents/stored-file-
1752	20240624161613578/Report_on_Updated_fNRB_Values_20%20June%20
1753	<u>2024.pdf</u>
1754	Gill-Wiehl, A., Hogan, M., Haya, B. "Quantifying leakage from cookstove
1755	projects." Journal publication forthcoming (in preparation).
1756	projects. Journal publication for theoreting (in preparation).
1757	International Energy Agency (2023). A Vision for Clean Cooking Access for
1758	All. Available at: https://www.iea.org/reports/a-vision-for-clean-
1759	cooking-access-for-all/executive-summary
1760	
1761	International Finance Corporation (2025). Outcome-based Finance in Clean
1762	Cooking, Distributed Renewable Energy, and Small-Scale
1763	Agribusiness. Available at:
1764	https://www.ifc.org/content/dam/ifc/doc/2025/unlocking-social-and-
1765	<u>environmental-impact-outcome-based-finance.pdf</u>
1766	Madi V MaDada C Jallamant D and Carbin J (2005) Engress Comings for
1767	Modi, V., McDade, S., Lallement, D., and Saghir, J. (2005). Energy Services for
1768 1769	the Millennium Development Goals. Energy Sector Management Assistance Programme, United Nations Development Programme, UN
1709	Millennium Project, and World Bank. Available at:
1770	https://qsel.columbia.edu/assets/uploads/blog/2016/publications/energ
1772	y-services-for-the-millennium-development-goals.pdf
1773	<u></u>

1774 1775 1776 1777 1778	Stoner, O., Lewis, J., Lucio, I., Gumy, S., Economou, T., and Adair-Rohani, H. "Household Cooking Fuel Estimates at Global and Country Level for 1990 to 2030." Nature Communications 12, no. 1 (October 4, 2021): 5793. https://doi.org/10.1038/s41467-021-26036-x
1779	Urban, J., Berger, J., Botha, Y., Boafo-Mensah, G., Mkwate, A., Tiewayo, J.,
1780	Bentson, S., and MacCarty, N. (2024). White Paper: Quantifying
1781	conversion factors for the value chain of charcoal production in Malawi
1782	and Ghana. Oregon State University, Aprovecho Research Center,
1783	SunFire Energy Malawi, and Council of Scientific Research-IIR Ghana.
1784	Available at:
1785	https://ir.library.oregonstate.edu/concern/technical_reports/2f75rj10q
1786	
1787	15.Appendices
1788	Included here:
1789	Appendix 1: Project Information Cover Sheet
1790	Appendix 1: Project information cover sheet Appendix 2: Grid Emission Factors
1791	Appendix 3: Off-Grid Emission Factors for Select Technologies
1792	Appendix 4: Upstream Emissions from Other Fuels in tonne/TJ
1793	Appendix 5: Default Point of Use Emission Factors, Thermal Efficiencies, and
1794	NCVs
1795	Appendix 6: Requirements and Best Practices for Baseline and Project
1796	Surveys
1797	Appendix 7: Requirements and Best Practices for KPTs
1798	Appendix 8: Requirements and Best Practices for CCTs
1799	Appendix 9: Requirements and Best Practices for SUMs
1800	Appendix 10: Sampling Requirements and Best Practices for Surveys, KPTs,
1801	CCTs, and SUMs
1802	Appendix 11: Default fNRB Values from CDM TOOL33
1803	

Appendix 1: Project information cover sheet 1805 1806 To be completed at the project design stage (validation) and updated at time of 1807 each verification (highlighting changes from originals) 1808 1809 Name of project proponent: 1810 Organization name: 1811 Phone: 1812 Fmail: 1813 1814 Proiect title: 1815 Project ID: 1816 Project location: 1817 Crediting period start date: 1818 Crediting period end date: 1819 1820 Baseline fuel type(s): 1821 Project fuel type(s): 1822 Project cookstove(s) type(s), model(s): 1823 Project cookstove(s) ISO thermal efficiency(ies): 1824 ISO tier(s) for PM2.5 emissions (optional): 1825 ISO tier(s) for CO emissions (optional): 1826 Number of households: 1827 Average household size (persons per household, regardless of age or gender): 1828 Number of cookstoves of each type: 1829 Expected CO₂e emission reductions (per household): 1830 Calculation sheet publicly available? (Y/N) 1831 1832 Fuel consumption continuously tracked for all project cookstoves in all 1833 households? (Y/N) 1834 If no (non-CTEC projects): 1835 Baseline fuel consumption approach (default or KPT): 1836 Baseline fuel consumption value: 1837 Justification if value over flagged threshold: 1838 Project monitoring approach (KPT or KPT+SUMs): 1839 Third party used for KPTs? (Y/N): Number of households sampled for KPT: 1840 1841 Number of households sampled for SUMs: 1842 1843 If yes (CTEC projects): 1844 Project monitoring approach (tracked fuel consumption+back-calculated baseline displacement or baseline+project KPTs): 1845 1846 Type of fuel consumption data: 1847 Third party used for KPTs? (Y/N) 1848 Number of households sampled for KPT: 1849 1850 fNRB source (CDM TOOL33 defaults/WebMoFuSS-derived): 1851 fNRB value:

- 1853 When required: calculated downward adjustment for first calendar year:
- 1854 When required: calculated downward adjustment annually thereafter:

- NCV approach for other than wood and charcoal (default or self-determined):
- 1857 If self-determined, method used:

1858 If self-determined results vary significantly from <u>Appendix 5</u> values, justification for the difference:

EFs default or self-determined:

Details on customer support activities provided:

- Demonstration that the project has selected technologies and fuels that meet the cooking needs of the target population:
- Project participant operations and maintenance support activities:
- Support communication channels availability to project participants:

How seasonality is addressed in the project monitoring plan:

- Justification for how this approach will result in accurate baseline and project fuel use measurements:
- If space heating is common in the project area, how space heating has been addressed in the project design:

For CTEC projects using fuel sale records to track consumption of pellets, LPG or ethanol:

- Safeguards taken to prevent fuel diversion for non-project activities (e.g., sealed canisters, tamper-evident meters, delivery log cross-verification, etc.):
- Results of cross-check of household fuel consumption tracked through fuel sale records against average project energy consumption values, and justification or removal of any outliers:

Description of any missing and outlier/excluded data for KPTs, CCTs, SUMs, surveys:

Description of how sampling randomization was conducted and what proof is available to auditors:

SUMs validation checks performed (as described in <u>Appendix 9</u>), for projects using SUMs:

1891 Compliance with the Principles for Responsible Carbon Finance in Clean Cooking (optional):

Appendix 2: Grid emission factors

The CLEAR methodology uses marginal grid emission factors. These grid emission factors should be sourced from the estimates provided by the <u>International Financial Institution's Technical Working Group</u> (IFI-TWG) on GHG Accounting, or from the marginal grid emission factors provided by the relevant national authority. Additionally, Article 6.4 Mechanism tools to derive electricity emission factors are currently under development.

The IFI-TWG uses the Combined Margin (CM) grid emission factor for electricity consumption. CM is a weighted average of each country's operating margin (33%) and build margin (67%). Operating margin is the cohort of existing power plants that are most likely to be brought online to meet an additional unit of demand. Build margin is the cohort of power plants expected to come online based on a country-specific assessment of planned and expected new generation capacity.

For IFI-TWG estimates, the most recent values should be used where available. To obtain a grid emission factor for a specific country, download <u>the full database</u> and use the data from Column E "Electricity Consumption". For reference, grid emission factors from 2024 for several countries are provided below.

Country / Territory / Island	gCO2/kWh Country / Territory / Island	gCO2/kWh Country / Territory / Island	gCO2/kWh
Afghanistan	193 <mark>Gabon</mark>	533 Palau	497
Algeria	397 Gambia	591 Panama	230
Angola	748 Ghana	276 Papua New Guinea	315
Bangladesh	412 Guam	428 Paraguay	0
Belize	183 Guatemala	427 Peru	252
Benin	576 Guinea	460 Philippines	525
Bhutan	0 Guinea-Bissau	577 Rwanda	416
Bolivia, Plurinational State of	393 Guyana	616 Samoa	434
Botswana	1070 Haiti	765 Sao Tomé & Principe	565
Brazil	150 Honduras	359 Senegal	656
Burkina Faso	539 India	608 Seychelles	479
Burundi	197 Indonesia	675 Sierra Leone	246
Cambodi a	588 Jamaica	498 Solomon Islands	563
Cameroon	354 Kenya	274 Somalia	582
Cape Verde	505 Kiribati	530 South Africa	786
Central African Republic	77 Lao People's Democratic Republic	555 South Sudan	704
Chad	581 Lebanon	567 Sri Lanka	506
Chile	235 Liberia	374 Sudan	398
China (PRC and Hong Kong)	485 Libya	493 Suriname	565
Colombia	208 Madagascar	567 Tajikistan	106
Comoros	589 Malawi	243 Tanzania, United Republic of	336
Congo, Democratic Republic of	0 Mali	623 Thailand	351
Congo, Republic of	405 Mauritania	513 Timor-Leste	589
Costa Rica	39 Mauritius	543 Togo	597
Côte d'Ivoire	314 Mexico	359 Tonga	533
Cuba	391 Micronesia	557 Tunisia	348
Djibouti	575 Morocco	547 Turkmenistan	676
Domini ca	433 Mozambique	111 Tuvalu	497
Dominican Republic	426 Myanmar	407 Uganda	116
Ecuador	280 Namibia	139 Uruguay	65
Egypt	406 Nauru	521 Uzbekistan	467
El Salvador	275 Nepal	0 Vanatu	504
Equatorial Guinea	361 Nicaragua	372 Venezuela, Bolivarian Republic of	368
Eritrea	704 Niger	718 Viet Nam	381
Eswatini	O Nigeria	358 Yemen	615
Ethiopia	0 Pakistan	386 Zambia	197
Fiji	334 Palestinian Authority	517 Zimbabwe	880

Appendix 3: Off-Grid Emission Factors for Select Technologies

If the project activity includes electric cooking from off-grid or mini-grid sources, then the emissions associated with those sources must be accounted for. Off-grid or mini-grid power may be derived from petrol or diesel generators as well as renewable sources. If off-grid or mini-grid power is derived from petrol or diesel generators, then emission factors for Equations 9 and 22 should be taken from the table below; values from the SEforAll Mini-Grid Emissions Tool. If off-grid or minigrid power is derived from renewable sources, then CLEAR assumes the upstream emissions are negligible and does not require they be included in assessing emission reductions. Additionally, Article 6.4 Mechanism tools to derive electricity emission factors are currently under development.

Generation technology	gCO₂e/kWh	Source
Petrol generator	1252	https://www.seforall.org/system/files/2021- 08/SEforALL_Carbon-emissions-methodology- note.pdf
Diesel generator	1000	https://www.seforall.org/system/files/2021- 08/SEforALL_Carbon-emissions-methodology- note.pdf

Appendix 4: Upstream Emissions from Other Fuels in tonne/TJ¹⁷

Fuel	CO ₂	CH ₄	N ₂ O	CO₂e	
Kerosene ^a	9.0	0.10	0.00016	11.9	
LPG from crude oil	18.4	0.12	0.00029	22.1	
LPG from natural gas	9.9	0.15	0.00019	14.5	
LPG derived from a mix of crude and natural gas inputs ^b	13.6	0.11	0.00019	16.8	
Coal mining and cleaning	1.5	0.23	0.00003	8.3	
Sugarcane-based ethanol ^{c,d,e}	-9.8	0.58	0.061	24.2	
Pellets	4.6	0.0085	0.0014	5.2	
Charcoal (traditional kiln assuming 6:1 conversion) ^{f, 1-6}	130	3.0	0.005	CO ₂ must be multiplied	
Charcoal (traditional kiln assuming 4:1 conversion) ^f	72	1.7	0.005	by fNRB before adding up to CO ₂ e	

Project proponents must use the emissions factors for the fuels provided here. These values come from <u>Floess et al. 2023</u>. For pellet fuels, which can have widely varying feedstocks, project proponents may estimate their own upstream emissions factors or justify values through published literature.

Global Warming Potentials (GWPs) from the IPCC Sixth Assessment Report (AR6.4) should be multiplied by the emission factors to convert them to CO_2e as follows:

- o CO₂: 1
- o CH₄ fossil fuels: 29.8
- o CH₄ non fossil fuels: 27.2
- o N₂O: 273

Notes:

- a) Kerosene emissions are based on jet fuel from the GREET model
- b) Combined LPG is a weighted average using the 2021 global input mix, which was 37% crude and 63% natural gas
- c) CO₂ is negative because it accounts for carbon fixed during plant growth
- d) CH_4 emissions are due to field burning, which is common for cane produced in many LMICs

¹⁷ From Floess et al. 2023.

- e) Life Cycle Assessment impacts are allocated by mass assuming 20% of farm-gate output goes toward ethanol
- f) Charcoal production emission factors are taken from six peer-reviewed studies of emissions from traditional kilns. The average conversion rate from those studies is 3.7 tonnes of oven-dry wood per tonne of charcoal. However, those studies were conducted under controlled conditions, which tend to yield higher conversion efficiencies than those typically observed in field conditions. In more industrialized contexts, a charcoal conversion factor 4:1 would be appropriate. However, CLEAR research supports a 6:1 charcoal conversion factor for LMIC contexts, as noted in the Explanation of Decisions document. For this methodology, we use a default conversion rate of 6:1 to better reflect conversion efficiencies observed in the field. This is incorporated into emissions factors here and fNRB calculations. Using a rate of 6:1 means that more wood, and therefore more carbon, is required to obtain the same amount of charcoal compared to the controlled studies. This results in higher carbon emissions. Accordingly, we proportionally adjust CO₂ and CH₄ emission factors to reflect this increased input, reflected in the table above. Nonetheless, this table also includes emissions factors based on a 4:1 conversion factor, to enable ICVCM Core Carbon Principles (CCP) eligibility.

Sources:

- ¹Bertschi, Isaac T., Robert J. Yokelson, Darold E. Ward, Ted J. Christian, and Wei Min Hao. "Trace Gas Emissions from the Production and Use of Domestic Biofuels in Zambia Measured by Open-Path Fourier Transform Infrared Spectroscopy." Journal of Geophysical Research-Atmosphere 108 (2003): 5–1, 5–13
- ²Lacaux, J. P., J. M. Brustet, R. Delmas, J. C. Menaut, L. Abbadie, B. Bonsang, H. Cachier, J. Baudet, M. O. Andreae, and G. Helas. "Biomass Burning in the Tropical Savannas of Ivory Coast: An Overview of the Field Experiment Fire of Savannas (FOS/DECAFE 91)." Journal of Atmospheric Chemistry 22, no. 1–2 (October 1995): 195–216. https://doi.org/10.1007/BF00708189
- ³Smith, K. R., D. P. Pennise, P. Khummongkol, V. Chaiwong, K. Ritgeen, J. Zhang, W. Panyathanya, R. A. Rasmussen, and M. A. K. Khalil. "Greenhouse Gases from Small-Scale Combustion in Developing Countries: Charcoal Making Kilns in Thailand." Research Triangle Park, NC: US EPA, 1999
- ⁴Pennise, D., K. R. Smith, J. P. Kithinji, M. E. Rezende, T. J. Raad, J. Zhang, and C. Fan. "Emissions of Greenhouse Gases and Other Airborne Pollutants from Charcoal-Making in Kenya and Brazil." Journal of Geophysical Research-Atmosphere 106 (2001): 24143–55

- ⁵Akagi, S. K., R. J. Yokelson, C. Wiedinmyer, M. J. Alvarado, J. S. Reid, T. Karl, J. D. Crounse, and P. O. Wennberg. "Emission Factors for Open and Domestic Biomass Burning for Use in Atmospheric Models." Atmospheric Chemistry and Physics 11, no. 9 (May 3, 2011): 4039–72. https://doi.org/10.5194/acp-11-4039-2011
- ⁶Christian, T. J., R. J. Yokelson, B. Cárdenas, L. T. Molina, G. Engling, and S.-C. Hsu. "Trace Gas and Particle Emissions from Domestic and Industrial Biofuel Use and Garbage Burning in Central Mexico." Atmospheric Chemistry and Physics 10, no. 2 (January 21, 2010): 565–84. https://doi.org/10.5194/acp-10-565-2010

Appendix 5: Default Point of Use Emission Factors, Thermal Efficiencies, and NCVs

Fuel	Net Calorific Value (TJ/tonnes)	Thermal efficiency	CO₂ Emission Factor (tonnes/TJ)	CH ₄ Emission Factor (tonnes/TJ)	N₂O Emission Factor (tonnes/TJ)
Biogas ¹	0.0504¹	50%	54.6¹	0.0051	0.00011
Charcoal (2-5)	0.0295	25%	78.5	0.2	0.008
Kerosene ¹	0.0438	50%	71.9	0.01	0.0006
LPG ¹	0.0473	50%	63.1	0.005	0.0001
Wood ¹	0.0156	15%	112	0.3	0.004
Dung ^{1, 6-9}	0.012	15%	80.4	.83	0.004
Other liquid biofuels 1	0.0274	50%	79.6	0.01	0.0006
Anthracite ¹	0.0267	Project-specific	98.3	0.3	0.0015
Other (Bituminous Coal) ¹	0.0258	Project-specific	94.6	0.3	0.0015
Sub- Bituminous ¹	0.0189	Project-specific	96.1	0.3	0.0015

Notes:

- To avoid double counting, the fuel emission factors above do not include upstream emissions, which are accounted for separately.
- Project proponents must use the NCV values for wood and charcoal listed here. For other fuels, project level tests using ISO 19867 may be used.
 Significant variance between such outputs and the values above must be noted and justified in the <u>Project Information Cover Sheet</u>.
- Default net calorific values and default emission factors for other fuel types (e.g., specific types of coal) can also be found in the 2006 IPCC Guidelines for National Greenhouse Gas Inventories or may be justified from literature and/or testing reports.
- GWPs from the IPCC Sixth Assessment Report (AR6.4) should be multiplied by the emission factors to convert them to CO₂e as follows:
 - o CO₂: 1
 - o CH₄ fossil fuels: 29.8
 - o CH₄ non fossil fuels: 27.2
 - o N₂O: 273.
- The tonnes CO_2 e per TJ for CO_2 , CH_4 , and N_2O should be summed.

Sources

- ¹ Gomez, Darío R., and John D. Watterson. 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. edited by S. Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe. Kamiyamaguchi Hayama, Japan: Institute for Global Environmental Strategies.
- ² Brocard, D., C. Lacaux, J. P. Lacaux, G. Kouadio, and V. Yoboue. "Emissions from the Combustion of Biofuels in Western Africa." In Biomass Burning and Global Change, edited by J. S. Levine, 1:350–60. Cambridge, MA: MIT Press, 1996.
- ³ Bertschi, Isaac T., Robert J. Yokelson, Darold E. Ward, Ted J. Christian, and Wei Min Hao. "Trace Gas Emissions from the Production and Use of Domestic Biofuels in Zambia Measured by Open-Path Fourier Transform Infrared Spectroscopy." Journal of Geophysical Research-Atmosphere 108 (2003): 5–1, 5–13.
- ⁴ Akagi, S. K., R. J. Yokelson, C. Wiedinmyer, M. J. Alvarado, J. S. Reid, T. Karl, J. D. Crounse, and P. O. Wennberg. "Emission Factors for Open and Domestic Biomass Burning for Use in Atmospheric Models." Atmospheric Chemistry and Physics 11, no. 9 (May 3, 2011): 4039–72. https://doi.org/10.5194/acp-11-4039-2011
- ⁵ Smith, Kirk, R. Uma, V. V. N. Kishore, K. Lata, V. Joshi, Junfeng Zhang, R. A. Rasmussen, and M. A. K. Khalil. "Greenhouse Gases From Small-Scale Combustion Devices In Developing Countries Phase IIa: Household Stoves In India." Research Triangle Park, NC: US Environmental Protection Agency, June 2000.
- ⁶IPCC. Guidelines for National Greenhouse Gas Inventories: Reference Manual. 1996.

 ⁷Fleming LT, Weltman R, Yadav A, et al. Emissions from village cookstoves in Haryana, India, and their potential impacts on air quality. Atmos Chem Phys. 2018;18:15169–15182.
- ⁸Stockwell CE, Christian TJ, Goetz JD, et al. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources. Atmospheric Chemistry and Physics. 2016;16:11043–11081.
- ⁹Akagi SK, Yokelson RJ, Wiedinmyer C, et al. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics. 2011;11:4039–4072.
- ¹⁰The Earth's Energy Budget, Climate Feedbacks and Climate Sensitivity, Table 7.15 in AR6 WG1 Chapter 7. https://doi.org/10.1017/9781009157896.009

Appendix 6: Requirements and Best Practices for Baseline and Project Surveys

Overview

Surveys are an integral part of the CLEAR methodology for developing the baseline scenario ex-ante, conducting a baseline KPT ex-ante, measuring usage annually, and completing a project KPT bi-annually.

This Appendix provides:

- General guidance on conducting high quality surveys;
- Resources with sample questionnaires related to clean cooking; and
- Particular instructions for each required survey.

Requirements and guidance for selecting samples of appropriate size and representativeness can be found in <u>Appendix 10</u>.

General survey requirements and guidance

All surveys undertaken for CLEAR must be conducted by trained enumerators. Best practice is for these enumerators to be independent of the project proponent's organization. At a minimum, enumerators must not be engaged in a customerfacing role for the project proponent or its implementation partners, such as selling, marketing, distributing, or providing customer service for project technologies.

Before conducting surveys, the project proponent must ensure that relevant local authorities and community leaders have been consulted. All laws for the jurisdiction must be followed, and local customs should also be respected.

Wherever possible, all surveys should be conducted using an electronic platform with built-in quality checks.

All surveys should be conducted with the main household cook, who must give her informed consent prior to the start of the interview. Consent must be documented as part of the survey form. If cultural or domestic constraints require that the interview be conducted with someone else, the main cook should be present at the interview, and the enumerator should endeavor to vet the answers with her. If the main household cook is a dependent child, both the child and their guardian must provide consent and be present for the interview.

If the enumerators do not speak the local language fluently, an interpreter must be brought in to assist with administration of the questionnaire.

Surveys should be as concise as possible. Enumerators must provide a realistic estimate of the time needed to complete the survey, and efforts should be made to schedule interviews at times that minimize disruptions to the household.

Retrospective questions should ask the cook to report on their activities on a certain day, commonly "yesterday," as this approach has been shown to be more

accurate than asking interviewees to aggregate or approximate their activities over a longer period of time, such as "last week."

The methodology uses the term "cooking event" to refer to any occurrence where useful energy is delivered from a cookstove to fulfill a discrete task or set of tasks, such as cooking a meal (which may include multiple dishes), preparing tea, or heating water for bathing. Surveys undertaken for CLEAR should use similar language, and project proponents must ensure that respondents include all types of tasks conducted using their cookstoves in their responses.

General guidance on conducting high quality surveys in the low- and middle-income country (LMIC) context can be found in the following documents:

- Household Sample Surveys in Developing and Transition Countries
- Designing Household Survey Samples: Practical Guidelines
- WHO WORLD HEALTH SURVEY SURVEY MANUAL
- Siwatu, Gbemisola Oseni; Palacios-Lopez, Amparo; Mugera, Harriet Kasidi; Durazo, Josefine. Capturing What Matters: Essential Guidelines for Designing Household Surveys (English). LSMS Guidebook Washington, D.C.: World Bank Group.

http://documents.worldbank.org/curated/en/381751639456530686

Specific survey guidance and tested questions relating to various aspects of household energy patterns and transitions, including cooking carbon projects, can be found in the following resources. Not all questions may be relevant for CLEAR application.

- <u>Guidance on survey design</u> from the authors of Gill-Wiehl, A., Kammen, D.M. & Haya, B.K. Pervasive over-crediting from cookstove offset methodologies.
 Nat Sustain 7, 191–202 (2024). https://doi.org/10.1038/s41893-023-01259-6
- Gold Standard's MECD Survey Questionnaire
- Gold Standard's <u>TPDDTEC Survey Questionnaire</u>
- Clean Cooking Alliance's <u>Fuel Stacking Toolkit</u>

Baseline scenario survey

Purpose:

- Establish household size;
- Identify cooking fuels and technologies used;
- Document the percentage of cooking events carried out on each fueltechnology combination;
- Capture seasonal or other variation in the percentage of cooking events carried out on each fuel-technology combination over the course of one vear; and
- Understand the impact of space heating on fuel consumption (if any).

Project proponents are required to incorporate the resulting information on seasonal or other variations in fuel use into their monitoring plan design and to justify on the <u>Project Information Cover Sheet</u> how the approach they are taking will result in accurate baseline and project fuel use measurements. If space heating is common in the project area, the justification must include an explanation of how

space heating has been addressed in the project design. If an accurate approach cannot be taken, then the project proponent must instead select and justify a conservative approach.

Baseline and project KPT surveys

Purpose:

- Track the number of people cooked for; and
- Document any unusual cooking events.

Usage survey

Purpose:

- Determine the presence of the project technology, and frequency with which the household uses the project technology in order to determine if the household may be counted as a user household. Note that SUMs monitoring may be used to measure the frequency of the use, but the survey must still be conducted to determine the presence of the project technology.
- Assess the types and characteristics of seasonal variations that may affect the project's emission reductions.

Usage survey results shall be corroborated with a visual inspection using a standardized checklist to assess if the project technology is present in the kitchen and shows signs of recent use. Enumerators must also take photographs with a Geographic Information System (GIS) and time record of all the cookstoves present in the household, as well as of the cooking area(s). The photographs must include both close-ups of each technology and its fuel (if present) and wider compositions showing the position of the cookstoves within or near the household.

Supplemental purpose of first usage survey administered for any given household

- Establish household size;
- Identify cooking fuels and technologies used prior to acquisition of project technology (retrospective baseline);
- Document the percentage of cooking events carried out on each fueltechnology combination used prior to acquisition of project technology (retrospective baseline);

This supplemental usage survey activity is used to check how well the project household characteristics match the ex-ante baseline scenario. Retrospective questions are added to the first usage survey conducted in any given household. To the extent possible, these retrospective questions should be identical to the questions in the baseline scenario survey, just asked retrospectively. Project proponents must identify any mismatch between the primary fuel type and household size documented during the baseline scenario and those reported by actual project households during the project roll-out (see Section 8 for further details).

Appendix 7: Requirements and Best Practices for Kitchen Performance Tests (KPTs)

Overview

The KPT is a field-based methodology used to estimate household fuel consumption under real-world conditions. Within the CLEAR methodology, the KPT serves as the primary tool for assessing fuel savings needed to calculate emissions reductions.

This document provides context for how the KPT protocol should be applied in the CLEAR methodology. It refers to the latest version of the KPT protocol available on the CCA website at https://cleancooking.org/protocols. Where guidance provided here conflicts with the directives of the KPT protocol, guidance here should be followed for projects using CLEAR, including the energy consumption estimates on a per capita fuel consumption basis rather than per standard adult basis.

Sampling requirements

Projects must meet the 95/10 precision guideline for the total energy consumption (TJ/(person*year)) for the project and baseline KPTs or use the conservative 95% confidence bound that results in the lower emissions reduction estimate.

For baseline and project KPTs, households shall be selected from the group of households included in the baseline scenario survey and project usage surveys, respectively. Households are anticipated to be statistically similar to those of the larger surveys and must be within 10% of the household size and proportion of cooking done with the primary fuel for the respective baseline and project scenarios. If either of these conditions are not met, the project will conduct additional sampling until these conditions are met. This requirement is separate and additional to checking that the baseline scenario is representative of the project scenario (see Section 8 of the methodology). For the project scenario, sampling shall be stratified across technology ages to ensure representative results.

Given that simple random sampling may result in impractical logistics for four days of consecutive household visits, a household may be excluded if all of the following conditions are met:

- 1. The household requires more than one hour of transportation from the next nearest household in the sample;
- The households in the area where the samples are excluded can be demonstrated to be similar in household size, fuel use type, and energy demand; and
- 3. The total number of excluded households is not greater than 10% of households initially selected for the KPT sample.

Measurements and sample integrity

Scale Checks

- Scales must be checked with a certified calibration weight (5–20 kg) at least weekly during field campaigns and results of calibration checks clearly recorded to facilitate verification by VVBs.
- The scale must be accurate within 1% of the calibration mass.
- If a scale fails a check, any data collected since the last successful check must be excluded from the analysis.

Accounting for Wood Moisture

- Default energy conversions assume air-dried wood (~20% moisture, wet basis) with a Net Calorific Value (NCV) of 0.0156 TJ/tonne.
- This NCV should be applied to wood quantities before making any moisture adjustments.
- While NCV assumptions provide a standardized approach, it is best practice to measure actual moisture content, particularly to:
 - o Identify potential outliers
 - o Assess seasonal variations in fuel characteristics

Fuel provision

Because providing fuel to households can introduce substantial bias, fuel should not be provided to households for use during the KPT in most cases.

In situations where households normally collect their fuel (e.g., wood, crop residues, dung) daily and are not able to collect and store a full day's fuel in advance, project proponents may provide fuel for the KPT under the following conditions:

- The number of households that are unable to collect and store a full day's fuel in advance must comprise more than 40% of the KPT sample; otherwise, those households should simply be excluded from the sample.
- Where fuel is provided, the household must be identified as having been provided fuel, and a 20% discount must be applied to the fuel consumption measured for that household during the baseline KPT.
- The amount of fuel provided must not exceed 30 MJ/(person*day) (approximately 2 kg/(person*day)).
- If fuel is provided to a household for the baseline KPT, the same amount of fuel must also be provided to that household for the project KPT.

For households where the primary fuel is purchased in discrete quantities, and it is impractical to store three times the amount typically used in a day, projects must follow the KPT protocol guidance for fuel purchases and estimate weights accordingly.

Alternatively, rather than providing fuel, project proponents may use fuel-weighing sensors that measure fuel consumption in real-time. This option may be used for any KPT, regardless of household fuel constraints.

Data quality and outlier handling

Outliers Identification and Exclusion Criteria

Outliers shall be defined as data points that fall beyond 1.5 times the interquartile range (IQR) from its endpoints. Outliers may only be excluded if there is a clear,

documented reason for their removal. Any excluded data must be retained along with an explanation. Acceptable reasons for exclusion are:

- Data entry errors;
- Documented unusual events (e.g., party, non-household members using the cookstove); or
- A per capita fuel consumption >175 MJ/(person*day) for any single day (equivalent to ~10 kg of wood/(person*day)).

Minimum Data Requirements

- Only households with at least three complete days of data may be included in the analysis.
- These three days do not need to be consecutive if:
 - o Some data are missing due to measurement failures; and
 - o Additional visits were conducted to compensate.
 - o All data collection must occur within a two-week period.

CTEC KPT considerations

The CTEC KPT approach for determining energy consumption in the project scenario requires quantifying the energy consumption of all technologies used in the project scenario based on a project KPT. The project must use metered energy consumption data for the project technology/fuel specific to the KPT period where available.

Where metered energy consumption is not available specific to the KPT period, the traditional fuel-weighing KPT approach must be used. Fuel-weighing must always be used for fuel consumption based on sales tracking data.

Appendix 8: Requirements and Best Practices for Controlled Cooking Tests (CCTs)

Overview

The CCT is a field test used to measure cookstove performance in a controlled setting using local fuels, pots, and cooking practices, with local cooks preparing a pre-determined local meal, which may include multiple dishes. This standard meal is defined as all the prepared foods that are commonly eaten together by a household at the time of day when that household consumes their largest amount of food.

Within the CLEAR methodology, the CCT is used to assess the specific energy consumption of both baseline and project cookstoves, the ratio of which is used to back-calculate displaced baseline energy consumption in CTEC projects.

This document provides context for how the CCT protocol should be applied in the context of the CLEAR methodology. It refers to the latest version of the CCT protocol available on the CCA website at https://cleancooking.org/protocols. Where guidance provided here conflicts with the directives of the CCT protocol, guidance here should be followed for projects using CLEAR.

Sampling requirements

To ensure robust and representative data collection for the CCT within the CLEAR methodology, the following sampling and testing requirements must be adhered to.

1- Selection and testing of baseline and project cookstoves

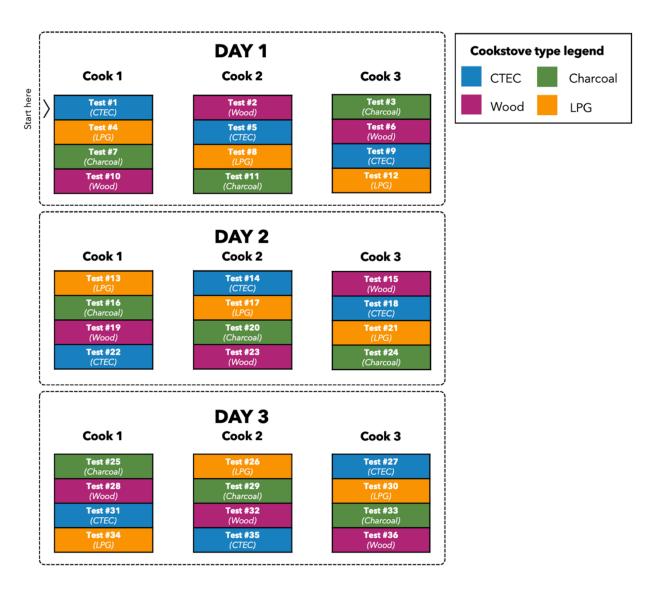
- Baseline technologies must be tested in order to be included in baseline fuel
 consumption displacement. Untested baseline technologies shall not be
 included in calculating displaced fuel consumption. For example, if project
 surveys indicate that a baseline technology accounts for 10% of cooking
 events and the project does NOT conduct a CCT with that baseline
 technology, then the 10% displacement that would have been attributed to
 that baseline technology is disregarded and not included in the back
 calculation, nor is it redistributed to the other cookstove types, resulting in a
 lower baseline than could otherwise be claimed;
- The most common example of a given type of baseline cookstove should be selected (see section on cookstove types below). For example, if there are multiple simple open-fire cookstove types (e.g., three-stone fire or U-shaped mud cookstove), the most common, representative example should be chosen for each cookstove type. This selection should be made as part of the process with project area cooks to determine the standard meal, per the CCT protocol¹⁸;

¹⁸ For example, common baseline wood cookstove types (i.e., categories) include three stone fires and sunken wood pits. For projects where both exist, project proponents would need to test one example of each type to be able to count displacement for both types in their emissions reductions. Displacement can be considered for stove types tested.

- At least three samples of each baseline cookstove type must be tested to account for inter-stove type variability;
- Each cook must prepare at least three meals per baseline cookstove type (at least one on each baseline cookstove type sample) to capture variability in performance.
- All project technologies must be tested.
- When CCTs are conducted as part of ongoing project monitoring, including to account for any degradation over time, then at least three cookstoves per vintage randomly sampled from project households, should be tested (households should receive a new replacement cookstove).

2- Selection of cooks

- At least three local cooks, who are unfamiliar with each other and reside in different locations within the project area, shall be recruited for testing;
- Cooks recruited for testing must not be affiliated with the project beyond their participation in the CCTs. Ideally, they would not be project participants, but if they are they must not receive any special treatment beyond what is required for the CCT. All cooks may be compensated for their time and travel for the CCT testing;
- The cooks should be familiar with and comfortable cooking on all of the baseline cookstove phenotypes;
- If any of the cooks do not yet have the project cookstove, they should be given one to use at their household for a minimum of two weeks before starting the CCT. They should be given the same training and support (and no extra) that regular project participants receive; and
- Ideally, the same cooks should be used for the initial CCTs conducted during the validation phase and for subsequent project monitoring periods. If not possible, alternate cooks may be selected using the same criteria as above.


Testing matrix and precision guidelines

The figure below represents the minimum required testing configuration for a CCT given the set of cookstoves listed above. Each of the three cooks should conduct an equal number of tests across all cookstove types. The cookstove types included in the example below are:

- CTEC cookstove (e.g., electric, LPG, ethanol, or biogas cookstove);
- LPG cookstove (baseline);
- Charcoal cookstove (baseline); and
- Simple wood cookstove (baseline, e.g., three-stone fire or mud cookstove).

To minimize bias, cookstove models should be rotated systematically so that no cook follows the same sequence repeatedly.

As shown in the Figure below, each set of three tests is conducted simultaneously, with Cook 1, Cook 2, and Cook 3 testing different cookstoves at the same time. The cookstove type order changes for each test block to ensure that no cook consistently follows the same cookstove sequence.

Minimum testing configuration and example schedule for CCT.

Measurements and sample integrity

Scale Checks

- Scales must be checked with a certified calibration weight (5–20 kg) daily during the testing campaign;
- The scale must be accurate within 1% of the calibration mass; and
- If a scale fails a check, any data collected since the last successful check must be excluded from the analysis.

Data quality and outlier handling

Outliers Identification and Exclusion Criteria

Outliers shall be defined as data points that fall beyond 1.5 times the interquartile range (IQR) from its endpoints. Outliers may only be excluded if there is a clear, documented reason for their removal. Any excluded data must be retained along with an explanation. Acceptable reasons for exclusion are:

- Data entry errors;
- Documented unusual events (test was interrupted, weather impacts, etc.); and
- A cook reports a problem with the specific test.

Minimum Data Requirements

- There must be equal numbers of successfully completed CCTs for each cooktechnology combination; and
- A minimum of three cooks and three repeated CCTs per cook-technology combination must be completed.

Classifying baseline cookstove types

Baseline cookstoves can be categorized into distinct types based on their physical structure. This classification helps standardize the selection of representative cookstove models for performance testing and emissions reduction calculations. The types described here are common in many regions, but they are not exhaustive. Different contexts, geographies, and cultural cooking practices will influence the specific baseline cookstoves used in a given project.

Project proponents must identify and justify the most appropriate types for their specific setting, ensuring that selected models accurately represent the prevailing baseline cooking technologies. These types should be used as the basis for testing fuel consumption, thermal efficiency, and emissions when establishing baseline parameters.

Examples of common wood cookstove types

- 1. Three-Stone Fire
 - A setup using three stones or bricks arranged in a triangular shape to support a cooking pot, with an open fire in the center.
 - o Materials: Natural stones, bricks, or compacted earth.
- 2. Sunken Pit Cookstove
 - o A shallow pit dug into the ground where wood is burned.
 - o Materials: Bare earth or reinforced with clay.
- 3. U-Shaped Mud Cookstove
 - A simple mud or clay structure in a U-shape, designed to hold a pot over an open fire.
 - o Materials: Locally sourced mud or clay, sometimes reinforced with straw.
- 4. Traditional Chulha/Chulho
 - Cookstove A raised, built-in clay or brick cookstove with one or more burner holes for pots.
 - o Materials: Clay, bricks, or mud, sometimes with cow dung.
- 5. Plancha Cookstove (Traditional)
 - A raised clay or metal cookstove with a flat griddle (plancha) for cooking tortillas or flatbreads.
 - o Materials: Clay, bricks, metal griddle.

Examples of common charcoal cookstove types

1. Metal Bucket Cookstove

- o A metal bucket or shallow metal bowl with ventilation holes at the bottom and a top grate for placing charcoal.
- o Materials: Sheet metal, iron, steel.
- 2. Ceramic-Lined Charcoal Cookstove
 - o A metal bucket cookstove with a ceramic liner inside for heat retention and insulation.
 - o Materials: Sheet metal exterior with a ceramic inner lining.
- 3. Clay Pot Cookstove
 - A clay vessel with an opening for airflow and a flat surface for a cooking pot.
 - o Materials: Fired clay or terracotta.

Appendix 9: Requirements and Best Practices for Stove Use Monitors (SUMs)

In the context of the CLEAR methodology, non-CTEC projects may choose from two approaches to determine energy consumption in the project scenario, differentiated by application (or non-application) of SUMs, which correspond to two different methods for accounting for the Hawthorne Effect.

When projects complement KPTs and surveys with SUMs measurements, the ratio of project technology usage (cooking events/day) measured during the KPT to project technology usage measured during the month prior to or following the KPT is used as a multiplier in the emission reduction estimate calculation (only when that value is less than 1).

When projects measure fuel consumption through KPTs, complemented by usage surveys only without SUMs, maximum emission reductions are capped at 75% of the KPT-based estimate to account for the Hawthorne Effect (the equivalent of a 75% ratio of project technology usage described above).

Project proponents opting to use the SUMs method must place SUMs on the project cookstoves for the duration of the KPT, as well as for the contiguous 30 days (before, after, or any combination of before and after) to serve as a reference point.

SUMs may be used to characterize the primary fuel-stove combination usage for identification of a potential mismatch between the baseline and project scenario profiles or to determine the proportion of cooking done on baseline cookstoves for back-calculating the baseline energy consumption ($tPC_{h,l}$).

SUMs may also be used to estimate Ψ , the percent of project households with the project cookstove present, where the project cookstove is used at least once per week. Projects must use the same measurement period (at a minimum) as that used for determining a potential Hawthorne effect, and the same sampling requirements for Ψ as those outlined in <u>Appendix 10</u>. If sampling includes homes where KPTs are being conducted, the frequency of use estimates must not include data from days when KPTs are occurring. For households where SUMs installation is not possible because the project cookstove is not present, these households must be included as non-users in the estimate Ψ .

This appendix provides requirements and best practice guidance for using SUMs within the CLEAR methodology.

Requirements for the use of SUMs in the CLEAR methodology

• The algorithm for estimating cookstove usage must be able to reliably distinguish cooking events from other potential factors that could be interpreted as cooking events but that are actually caused by external circumstances (e.g., temperature fluctuations from typical diurnal patterns).

- The algorithm shall be clearly presented publicly with associated equations and/or logic rules (see section below titled: *Public presentation of stove use algorithms*).
- The same algorithm and SUM device type shall be used for the duration of the project. If a different SUM device and/or algorithm is used, then the project must demonstrate that the stove use estimates between the two approaches are unbiased. This can be demonstrated by conducting a side-by-side comparison in a representative subsample of households, where both devices/algorithms are applied simultaneously, and the resulting cooking event estimates are compared. Statistical tests such as paired t-tests, regression analyses, or Bland–Altman plots may be used to assess whether systematic bias exists. The results of these tests, along with all supporting data and documentation, must be provided to the VVB.
- Sampling must meet the 95/10 precision guidelines, per the sampling guidance included in <u>Appendix 10</u>.
- SUMs sampling protocols (installation, placement, downloading) and the algorithm used to convert raw data into cooking events must not change between sampling during the KPTs and sampling prior to or following the KPTs.
- Project participants in the SUMs sample shall not receive any support different or additional to those not included in the sample.
- Project proponents shall ensure that photographs of the SUMs placement in each sampled household are taken and retained as part of the monitoring record.
- The average of the cooking events per day during the full 30 days of cookstove use monitoring must be used to adjust for potential Hawthorne Effects. If SUMs data is incomplete or missing, it must be omitted from the analysis.

Additional requirements for the use of SUMs to characterize fuel-stove use proportions

- If SUMs sampling is being used to characterize the primary fuel-stove combination usage for identification of a potential mismatch between the baseline and project scenario profiles $(PC_{b,i})$ and $(PC_{p,j})$, or for determination of proportion of cooking done on baseline cookstoves for back-calculating the baseline energy consumption $(tPC_{b,i})$, the following guidelines must be followed:
 - The guidance in the above bullet points must be followed, including the sample size guidance in Appendix 10
 - SUMs must be placed on all cookstove-fuel combinations (in each household) that are to be included in the baseline.

Best practice guidance for using SUMs

Installation

Project proponents should follow manufacturer installation requirements (if provided) for the SUMs instrumentation being used. Unless specifically indicated otherwise, placement of the device should generally follow these key guidelines.

- The project cookstoves' temperature profiles during cooking events should be analyzed before the field campaign to determine optimal placement.
- Temperature sensors and loggers should not be placed in a location where temperatures exceed their maximum operating/sensing temperature specifications.
- Sensor placements should provide a maximum temperature differential between ambient and cookstove temperature (without exceeding maximum operating temperature for the sensor).
- When possible, cookstoves and sensing units (e.g., thermocouple leads) should be kept out of direct sunlight to reduce sensors logging the radiant heat of the sun, which can be confounded with cooking.
- Sensor placement must be standardized as much as possible across the sample.
- Sensor placement should not get in the way of the pot, or obstruct or interrupt the cooking, or be located where liquids are likely to collect or boil over.
- Sensor placement should not interfere with participants' normal activities. Placement should also minimize risk of the sensor being accessed, moved, and/or damaged by participants, other people, or common household features, such as water, insects, or animals.
- Project proponents should explain to household members that the SUMs are for measuring temperature and should not be tampered with. Household members should not press buttons, move parts, or disconnect or connect the sensors to computers or power.

Cookstove temperature analysis

Project proponents should follow manufacturer guidelines for data analysis¹⁹ where available. Unless specifically indicated otherwise, analysis should generally follow these key guidelines.

- Subtracting ambient temperature generally improves the ability to resolve a temperature response during cookstove events from normal diurnal and seasonal temperature variation.
- Perform validation or sense checks on the algorithms used to determine cookstove use. These can include:
 - Having a person with expertise manually inspect at least a subset of analyzed files to check that the algorithm is determining apparent cooking events as intended.
 - Cross-referencing observational data on cooking events with the analyzed data.
 - Using common sense checks with what is generally known about cooking behaviors in the region. For example, if only one cooking event per week is being estimated when it's known

¹⁹ Of note, data analysis can be challenging for cookstoves that are frequently moved indoors and outdoors for cooking, due to solar radiation affecting heating and cooling rates, so piloting placement of temperature monitors or probes is critical for such applications.

that people are using several kg of fuel every day, the placement or algorithm are not working properly.

Public presentation of stove use algorithms

To support transparency and reproducibility in stove use monitoring, all algorithms used to convert raw SUM data into cooking events must be publicly available, following the requirements below.

- **1. Algorithm logic description.** Provide a clear explanation of how the algorithm detects cooking events, including:
 - Physical parameter(s) monitored (e.g., temperature, power)
 - Logic for identifying events (e.g., threshold crossings, sustained changes)
 - Preprocessing steps (e.g., filtering, smoothing)
 - Contextual adjustments (e.g., ambient corrections, diurnal patterns)
- **2. Formal equation or code.** Present the algorithm as:
 - Equations and logic rules, or
 - Annotated code outlining the decision steps.
- 3. Parameter definitions and units. All thresholds and time-related values must:
 - Be listed with units (e.g., °C, seconds).
 - Be applied consistently across devices and time.
- **4. SUM device specifications.** These include:
 - Manufacturer, model, and firmware version
 - Sampling rate and sensor types
 - Any known limitations affecting performance
- **5. Data sample publication.** Share at least three anonymized raw data files (2 weeks or more of data) for three different project cookstoves with their processed output to demonstrate algorithm performance. Data must:
 - Be in a usable format (e.g., CSV, JSON)
 - Include clear headers, units, and time zone information
- **6. Hosting and access**. Publish the algorithm and sample dataset on a stable public platform (e.g., project website, registry, GitHub). Include the link in the Project Information Cover Sheet.

Example photos of SUMs placement.

Appendix 10: Sampling Requirements and Best Practices for Surveys, Kitchen Performance Tests (KPTs), Controlled Cooking Tests (CCTs), and Stove Use Monitors (SUMs)

Note: Sampling requirements and guidance from this appendix may be revised in accordance with forthcoming Article 6.4 standard and guidance on sampling.

This appendix supports project proponents in planning sample sizes for data collection and ensuring that monitored parameters meet required precision standards. Specifically, it addresses the 95/10 precision guideline, which stipulates that sample sizes must be sufficient to achieve a 95% confidence interval with less than 10% margin of error. If a monitored parameter estimate does not meet the precision guideline, then additional sampling must be conducted, or the confidence bound that results in a lower emission reduction estimate must be applied.

For projects of 25,000 or more project households, the minimum required sample sizes for all monitored parameters, except those based on specific consumption from CCTs, shall scale by 0.05% in proportion to the total number of project households above 25,000.

Examples:

- A project with 25,000 households requires 100 KPTs and 200 surveys (minimums).
- A project with 250,000 households requires:
 - o KPTs: 100 + (0.0005 × [250,000 25,000]) = 213
 - o Surveys: 200 + (0.0005 × [250,000 25,000]) = 313

Projects must still demonstrate that the final sample achieves the 95/10 precision threshold. Projects using cluster sampling must account for design effects in both planning and analysis stages. If the achieved sample does not meet precision requirements, additional sampling or the application of a conservative confidence bound must be undertaken.

The appendix is structured into four components. First, it presents sampling method approaches. Next, a table outlining the monitored parameters that require sample size determination, including their descriptions, data sources, and applicable rules. This table provides direction on which sampling guidance section to follow for each parameter. The third section focuses on proportional parameters, such as the proportion of cooking conducted using a primary fuel, detailing methods for determining sample sizes. The last section provides guidance for continuous variables, such as baseline energy consumption, incorporating statistical approaches for variables with skewed normal distributions.

Sampling methods

Two sampling approaches are used in the CLEAR methodology: Simple Random Sampling and Cluster Random Sampling. The choice between these methods

depends on the characteristics of the target population and logistical considerations. For both approaches, when sampling parameters for the project scenario, sampling shall be stratified proportionally across installed cookstove age groups (<1 year, 1–2 years, 2-3, 3-4, and 4> years) to ensure that performance and usage estimates reflect the distribution of cookstove ages in the project. Projects using cluster sampling must ensure that age stratification is preserved within and/or across clusters, as appropriate.

Regardless of the sampling approach used, the project proponent must document and provide verifiable materials to demonstrate how randomization was conducted and how it can be independently verified. Acceptable documentation may include a record of the random number generator or software used, screenshots of the randomization process, or signed attestations from third parties who witnessed the selection. These materials shall be maintained as part of the project record and made available to the validation and verification body upon request.

Simple random sampling

- Each household in the population has an equal probability of being selected.
- Suitable when the population is relatively homogeneous, such as within the same climate zone or socio-economic setting.
- Provides unbiased estimates.
- Can be costly and time-consuming, particularly if the population is spread over a large geographical area.

Cluster random sampling

- The population is divided into clusters, such as villages or communities, and a random selection of clusters is made. All or a subset of households within selected clusters are then sampled.
- Useful when the population is widely dispersed, reducing costs and logistical challenges.
- More efficient for large-scale studies but requires adjusting for the intraclass correlation coefficient (ICC), which measures the degree of similarity between households within the same cluster. A high ICC indicates that households within a cluster are more alike, meaning that the effective sample size is smaller than the actual number of observations, often requiring an increase in the number of clusters to achieve the desired precision.
- Assumes that each cluster represents the overall population, which may introduce bias if clusters are highly variable.
- The design and calculations for this approach are more complex. Projects applying cluster sampling must involve someone with sufficient statistical expertise to ensure appropriate design, analysis, and interpretation.

Parameter	Description	Unit	Data source	Rule and guidance	Reference section for guidance
tPC _{b,i}	For CTEC back-calculated baseline projects: Proportion of cooking events conducted using baseline fuelstove combinations i		Baseline scenario surveys or SUMs	95/10 for the primary cookstove-fuel combination Minimum 200 households + 0.05% of households additional to 25,000	Proportional distribution
$PC_{b,i}$	For non-CTEC and CTEC with KPT projects: Proportion of cooking events conducted using baseline fuel <i>i</i>		Baseline scenario surveys or SUMs	95/10 for the primary fuel type Minimum 200 households + 0.05% of households additional to 25,000	Proportional distribution
$PC_{p,j}$	For non-CTEC and CTEC with KPT projects: Proportion of cooking events conducted using project fuel <i>j</i>	Percentage	Project usage surveys or SUMs	95/10 for the primary fuel type Minimum 200 households + 0.05% of households additional to 25,000	Proportional distribution

$H_{\mathcal{S}}$	Average household size	Persons per household (Number)	Baseline and project usage surveys	95/10 Minimum 200 households + 0.05% of households additional to 25,000	Continuous distribution
$\sum EC_{base,i}$	Total energy consumption of baseline fuels (i) non-CTEC projects (summed over all fuels used in households)	TJ/(person*year)	KPT	95/10 Minimum 100 households + 0.05% of households additional to 25,000	Continuous distribution
$\sum EC_{proj,j}$	Total energy consumption of project fuels (j) non-CTEC projects (summed over all fuels used in households)	TJ/(person*year)	КРТ	95/10 Minimum 100 households + 0.05% of households additional to 25,000	Continuous distribution
$SC_{b,i}$	Specific energy consumption of a baseline fuelstove combination <i>i</i> to cook a given amount of food	MJ/kg food	ССТ	95/10 Minimum 9 CCTs per cookstove type	Continuous distribution
$SC_{p,j}$	Specific energy consumption of a project fuel- stove combination <i>j</i> to	MJ/kg food	ССТ	95/10 Minimum 9 CCTs per cookstove type	Continuous distribution

	cook a given amount of food				
∑lEC _{base,KPT,i}	Total energy consumption of baseline fuels (<i>i</i>) for CTEC projects from KPT	TJ/(person*year)	KPT	95/10 Minimum 100 households + 0.05% of households additional to 25,000	Continuous distribution
$\sum tEC_{proj,KPT,j}$	Total energy consumption of all fuels in project scenario (j) for CTEC projects from KPT	TJ/(person*year)	КРТ	95/10 Minimum 100 households + 0.05% of households additional to 25,000	Continuous distribution
PTC_m	Average project technology cooking events per day over 1 month from SUMs measurements	Cooking events/day	SUMs	95/10 Minimum 100 households + 0.05% of households additional to 25,000	Continuous distribution
PTC_{KPT}	Average project technology cooking events per day over the project KPT from SUMs measurements	Cooking events/day	SUMs	95/10 Minimum 100 households + 0.05% of households additional to 25,000	Continuous distribution
Ψ	Percent of project households with cookstoves	Percentage	Project usage	95/10 Minimum 200 households +	Proportional distribution

present and	0.05% of
used at least	households
once per week	additional to
	25,000

Sample size guidance: continuous variables

Estimation of required sample size

To estimate the required sample size for continuous variables, project proponents must first determine the coefficient of variation (CoV), which represents the variability of the data relative to the mean. The lookup table provided applies only to simple random sampling and assumes a normally or skew-normally distributed variable. If project proponents do not have prior data to estimate CoV, they should conduct a small pilot study to generate an approximation. Additionally, project proponents should plan for oversampling to account for potential data loss due to non-responses, measurement errors, or incomplete records, ensuring that the final sample size meets the precision requirement.

For cluster sampling, where participants are grouped into clusters such as villages or communities, the required sample size will be larger than in simple random sampling due to intra-cluster correlation. This means that the effective sample size is smaller than the actual number of observations. In such cases, design effects must be accounted for, and sample size determination should be conducted with the assistance of a statistician.

Simple random sampling: CI: 95%		
CV(%)	Relative precision	
	10%	
5	25	
10	25	
15	25	
20	25	
25	40	
30	55	
35	75	
40	100	
45	125	
50	155	
55	185	
60	220	
65	255	
70	295	
75	340	
80	385	
85	435	
90	490	
95	545	
100	605	

<u>Determination of meeting precision guidelines</u>

Once data collection is complete, project proponents must verify whether the achieved sample size meets the 95/10 precision guideline. This requires calculating the actual CoV from the collected data and confirming that the confidence interval is within 10% of the mean estimate. Project proponents should utilize the <u>sample</u>

<u>size calculator</u> to determine whether their sample meets the required precision and the 95% confidence bounds that result in lower emission reductions estimates if the precision guideline is not met.

For **cluster sampling**, meeting the precision requirement is more complex due to the need to adjust for design effects. In such cases, a statistician should evaluate whether the collected data meets the required confidence and precision levels. If the required precision is not met, the conservative confidence bound must be applied, or additional sampling may be needed.

Sample size guidance: proportional variables

Estimation of required sample size

To estimate the sample size for proportional variables (e.g., the proportion of households using primary fuel), project proponents must first determine an expected proportion for the population. This can be based on prior research, survey data, or a pilot study. The lookup table provided is only applicable to simple random sampling and assumes a binomial distribution.

95% CI: Simple random sampling		
Prevalence (%)	Precision	
	10%	
10	35	
15	49	
20	61	
25	72	
30	81	
35	87	
40	92	
45	95	
50	96	
55	95	
60	92	
65	87	
70	81	
75	72	
80	61	
85	49	
90	35	

As with continuous variables, oversampling is necessary to account for expected data loss due to incomplete responses or participant dropouts. For cluster sampling, the required sample size will be larger due to intra-cluster correlation, meaning the actual number of surveyed participants must exceed the effective sample size. In such cases, a statistician should be consulted to correctly adjust for design effects.

Determination of meeting precision guidelines

Once the survey is completed, project proponents must verify that the achieved sample meets the 95/10 precision requirement by calculating the actual proportion and confirming that the confidence interval remains within 10% of the estimated proportion. Project proponents should utilize the <u>sample size calculator</u> to determine whether their sample meets the required precision and the 95% confidence bounds that result in lower emission reductions estimates if the precision guideline is not met.

For cluster sampling, verification of precision must account for the design effect, which reduces the effective sample size. This requires statistical expertise, and a statistician should be involved in determining whether the collected sample meets the required confidence and precision levels. If precision is not met, additional sampling or conservative confidence bounds should be applied.

Appendix 11: Default fNRB Values from CDM TOOL33

CDM TOOL33 (version 3.0) default values for fNRB at the regional (continental) and national levels are listed below.

Regional (continental) fNRB values

Region	fNRB (%)	
Asia	18	
Latin America	32	
Sub-Saharan Africa	40	

National fNRB values

Country	fNRB (%)
Afghanistan	10
Angola	27
Armenia	1
Azerbaijan	1
Bangladesh	39
Benin	34
Bhutan	30
Plurinational State of Bolivia	14
Botswana	35
Brazil	13
Burkina Faso	36
Burundi	35
Cambodia	20
Cameroon	38
Central African Republic	42
Chad	37
China	10
Colombia	7
Costa Rica	10
Côte d'Ivoire	19
Democratic Republic of the Congo	42
Djibouti	1
Dominican Republic	43
Ecuador	28
Equatorial Guinea	31
Eritrea	30

	16
Eswatini	
Ethiopia	33
Gabon	18
Gambia	55
Georgia	1
Ghana	35
Guatemala	41
Guinea	37
Guinea-Bissau	34
Guyana	0
Haiti	59
Honduras	33
India	7
Indonesia	9
Islamic Republic of Iran	5
Iraq	1
Jamaica	38
Jordan	1
Kazakhstan	7
Kenya	29
- Kyrgyzstan	25
Lao People's Democratic Republic	47
Liberia	40
Madagascar	36
Malawi	48
Malaysia	39
Mali	45
Mauritania	65
Mexico	30
Mongolia	12
Mozambique	38
Myanmar	36
Namibia	28
Nepal	45
Nicaragua	26
Niger	61
Nigeria Nigeria	38
Pakistan	8
Panama	21
Papua New Guinea	8
Peru	4
	·

Philippines	55
Republic of the Congo	16
Rwanda	33
Senegal	61
Sierra Leone	41
Somalia	64
South Africa	18
South Sudan	35
Sri Lanka	45
Sudan	50
Syrian Arab Republic	3
Tajikistan	19
United Republic of Tanzania	51
Thailand	20
Timor-Leste	39
Тодо	46
Türkiye	13
Turkmenistan	0
Uganda	39
Uzbekistan	15
Viet Nam	36
Zambia	40
Zimbabwe	21